BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 24674363)

  • 41. A clinical evaluation of the performance of five commercial artificial intelligence contouring systems for radiotherapy.
    Doolan PJ; Charalambous S; Roussakis Y; Leczynski A; Peratikou M; Benjamin M; Ferentinos K; Strouthos I; Zamboglou C; Karagiannis E
    Front Oncol; 2023; 13():1213068. PubMed ID: 37601695
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluating the Effectiveness of Deep Learning Contouring across Multiple Radiotherapy Centres.
    Walker Z; Bartley G; Hague C; Kelly D; Navarro C; Rogers J; South C; Temple S; Whitehurst P; Chuter R
    Phys Imaging Radiat Oncol; 2022 Oct; 24():121-128. PubMed ID: 36405563
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Glioma consensus contouring recommendations from a MR-Linac International Consortium Research Group and evaluation of a CT-MRI and MRI-only workflow.
    Tseng CL; Stewart J; Whitfield G; Verhoeff JJC; Bovi J; Soliman H; Chung C; Myrehaug S; Campbell M; Atenafu EG; Heyn C; Das S; Perry J; Ruschin M; Sahgal A
    J Neurooncol; 2020 Sep; 149(2):305-314. PubMed ID: 32860571
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluating the impact of an integrated multidisciplinary head & neck competency-based anatomy & radiology teaching approach in radiation oncology: a prospective cohort study.
    D'Souza L; Jaswal J; Chan F; Johnson M; Tay KY; Fung K; Palma D
    BMC Med Educ; 2014 Jun; 14():124. PubMed ID: 24969509
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Automatic contouring of brachial plexus using a multi-atlas approach for lung cancer radiotherapy.
    Yang J; Amini A; Williamson R; Zhang L; Zhang Y; Komaki R; Liao Z; Cox J; Welsh J; Court L; Dong L
    Pract Radiat Oncol; 2013 Oct; 3(4):. PubMed ID: 24273627
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Use of auto-segmentation in the delineation of target volumes and organs at risk in head and neck.
    Lim JY; Leech M
    Acta Oncol; 2016 Jul; 55(7):799-806. PubMed ID: 27248772
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Prospective Study Measuring Resident and Faculty Contour Concordance: A Potential Tool for Quantitative Assessment of Residents' Performance in Contouring and Target Delineation in Radiation Oncology Residency.
    Nissen C; Ying J; Kalantari F; Patel M; Prabhu AV; Kesaria A; Kim T; Maraboyina S; Harrell L; Xia F; Lewis GD
    J Am Coll Radiol; 2024 Mar; 21(3):464-472. PubMed ID: 37844655
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning.
    Wong J; Fong A; McVicar N; Smith S; Giambattista J; Wells D; Kolbeck C; Giambattista J; Gondara L; Alexander A
    Radiother Oncol; 2020 Mar; 144():152-158. PubMed ID: 31812930
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Contouring and dose calculation in head and neck cancer radiotherapy after reduction of metal artifacts in CT images.
    Hansen CR; Christiansen RL; Lorenzen EL; Bertelsen AS; Asmussen JT; Gyldenkerne N; Eriksen JG; Johansen J; Brink C
    Acta Oncol; 2017 Jun; 56(6):874-878. PubMed ID: 28464749
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Statistical modeling approach to quantitative analysis of interobserver variability in breast contouring.
    Yang J; Woodward WA; Reed VK; Strom EA; Perkins GH; Tereffe W; Buchholz TA; Zhang L; Balter P; Court LE; Li XA; Dong L
    Int J Radiat Oncol Biol Phys; 2014 May; 89(1):214-21. PubMed ID: 24613812
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantitative assessment of target delineation variability for thymic cancers: Agreement evaluation of a prospective segmentation challenge.
    Holliday E; Fuller CD; Kalpathy-Cramer J; Gomez D; Rimner A; Li Y; Senan S; Wilson LD; Choi J; Komaki R; Thomas CR
    J Radiat Oncol; 2016 Mar; 5(1):55-61. PubMed ID: 27570583
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Variability of target and normal structure delineation for breast cancer radiotherapy: an RTOG Multi-Institutional and Multiobserver Study.
    Li XA; Tai A; Arthur DW; Buchholz TA; Macdonald S; Marks LB; Moran JM; Pierce LJ; Rabinovitch R; Taghian A; Vicini F; Woodward W; White JR;
    Int J Radiat Oncol Biol Phys; 2009 Mar; 73(3):944-51. PubMed ID: 19215827
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative evaluation of autocontouring in clinical practice: A practical method using the Turing test.
    Gooding MJ; Smith AJ; Tariq M; Aljabar P; Peressutti D; van der Stoep J; Reymen B; Emans D; Hattu D; van Loon J; de Rooy M; Wanders R; Peeters S; Lustberg T; van Soest J; Dekker A; van Elmpt W
    Med Phys; 2018 Nov; 45(11):5105-5115. PubMed ID: 30229951
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Deep Learning-Based Delineation of Head and Neck Organs at Risk: Geometric and Dosimetric Evaluation.
    van Rooij W; Dahele M; Ribeiro Brandao H; Delaney AR; Slotman BJ; Verbakel WF
    Int J Radiat Oncol Biol Phys; 2019 Jul; 104(3):677-684. PubMed ID: 30836167
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Clinical acceptability of automatically generated lymph node levels and structures of deglutition and mastication for head and neck radiation therapy.
    Maroongroge S; Mohamed AS; Nguyen C; Guma De la Vega J; Frank SJ; Garden AS; Gunn BG; Lee A; Mayo L; Moreno A; Morrison WH; Phan J; Spiotto MT; Court LE; Fuller CD; Rosenthal DI; Netherton TJ
    Phys Imaging Radiat Oncol; 2024 Jan; 29():100540. PubMed ID: 38356692
    [TBL] [Abstract][Full Text] [Related]  

  • 56. External validation of deep learning-based contouring of head and neck organs at risk.
    Brunenberg EJL; Steinseifer IK; van den Bosch S; Kaanders JHAM; Brouwer CL; Gooding MJ; van Elmpt W; Monshouwer R
    Phys Imaging Radiat Oncol; 2020 Jul; 15():8-15. PubMed ID: 33458320
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Variations in the contouring of organs at risk: test case from a patient with oropharyngeal cancer.
    Nelms BE; Tomé WA; Robinson G; Wheeler J
    Int J Radiat Oncol Biol Phys; 2012 Jan; 82(1):368-78. PubMed ID: 21123004
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The emerging role of radiation therapists in the contouring of organs at risk in radiotherapy: analysis of inter-observer variability with radiation oncologists for the chest and upper abdomen.
    Arculeo S; Miglietta E; Nava F; Morra A; Leonardi MC; Comi S; Ciardo D; Fiore MS; Gerardi MA; Pepa M; Gugliandolo SG; Livi L; Orecchia R; Jereczek-Fossa BA; Dicuonzo S
    Ecancermedicalscience; 2020; 14():996. PubMed ID: 32153651
    [TBL] [Abstract][Full Text] [Related]  

  • 59.
    Lin D; Wahid KA; Nelms BE; He R; Naser MA; Duke S; Sherer MV; Christodouleas JP; Mohamed ASR; Cislo M; Murphy JD; Fuller CD; Gillespie EF
    J Med Imaging (Bellingham); 2023 Feb; 10(Suppl 1):S11903. PubMed ID: 36761036
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Clinical relevance of metal artefact reduction in computed tomography (iMAR) in the pelvic and head and neck region: Multi-institutional contouring study of gross tumour volumes and organs at risk on clinical cases.
    Hagen M; Kretschmer M; Würschmidt F; Gauer T; Giro C; Karsten E; Lorenzen J
    J Med Imaging Radiat Oncol; 2019 Dec; 63(6):842-851. PubMed ID: 31265214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.