BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 24674363)

  • 61. SU-E-J-102: The Impact of the Number of Subjects for Atlas-Based Automatic Segmentation.
    Ducote JL; Sehgal V; Wong J; Al-Ghazi M
    Med Phys; 2012 Jun; 39(6Part7):3676. PubMed ID: 28519803
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Clinical evaluation of multi-atlas based segmentation of lymph node regions in head and neck and prostate cancer patients.
    Sjöberg C; Lundmark M; Granberg C; Johansson S; Ahnesjö A; Montelius A
    Radiat Oncol; 2013 Oct; 8():229. PubMed ID: 24090107
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Real-world analysis of manual editing of deep learning contouring in the thorax region.
    Vaassen F; Boukerroui D; Looney P; Canters R; Verhoeven K; Peeters S; Lubken I; Mannens J; Gooding MJ; van Elmpt W
    Phys Imaging Radiat Oncol; 2022 Apr; 22():104-110. PubMed ID: 35602549
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Expert Consensus Contouring Guidelines for Intensity Modulated Radiation Therapy in Esophageal and Gastroesophageal Junction Cancer.
    Wu AJ; Bosch WR; Chang DT; Hong TS; Jabbour SK; Kleinberg LR; Mamon HJ; Thomas CR; Goodman KA
    Int J Radiat Oncol Biol Phys; 2015 Jul; 92(4):911-20. PubMed ID: 26104943
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A multiphase validation of atlas-based automatic and semiautomatic segmentation strategies for prostate MRI.
    Martin S; Rodrigues G; Patil N; Bauman G; D'Souza D; Sexton T; Palma D; Louie AV; Khalvati F; Tizhoosh HR; Gaede S
    Int J Radiat Oncol Biol Phys; 2013 Jan; 85(1):95-100. PubMed ID: 22572076
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Interobserver Variability in the Delineation of Gross Tumour Volume and Specified Organs-at-risk During IMRT for Head and Neck Cancers and the Impact of FDG-PET/CT on Such Variability at the Primary Site.
    Gudi S; Ghosh-Laskar S; Agarwal JP; Chaudhari S; Rangarajan V; Nojin Paul S; Upreti R; Murthy V; Budrukkar A; Gupta T
    J Med Imaging Radiat Sci; 2017 Jun; 48(2):184-192. PubMed ID: 31047367
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Clinical validation and applications for CT-based atlas for contouring the lower cranial nerves for head and neck cancer radiation therapy.
    Mourad WF; Young BM; Young R; Blakaj DM; Ohri N; Shourbaji RA; Manolidis S; Gámez M; Kumar M; Khorsandi A; Khan MA; Shasha D; Blakaj A; Glanzman J; Garg MK; Hu KS; Kalnicki S; Harrison LB
    Oral Oncol; 2013 Sep; 49(9):956-963. PubMed ID: 23623404
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Head-and-neck target delineation among radiation oncology residents after a teaching intervention: a prospective, blinded pilot study.
    Bekelman JE; Wolden S; Lee N
    Int J Radiat Oncol Biol Phys; 2009 Feb; 73(2):416-23. PubMed ID: 18538494
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Optimal virtual monoenergetic image in "TwinBeam" dual-energy CT for organs-at-risk delineation based on contrast-noise-ratio in head-and-neck radiotherapy.
    Wang T; Ghavidel BB; Beitler JJ; Tang X; Lei Y; Curran WJ; Liu T; Yang X
    J Appl Clin Med Phys; 2019 Feb; 20(2):121-128. PubMed ID: 30693665
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A review of interventions to reduce inter-observer variability in volume delineation in radiation oncology.
    Vinod SK; Min M; Jameson MG; Holloway LC
    J Med Imaging Radiat Oncol; 2016 Jun; 60(3):393-406. PubMed ID: 27170216
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Magnetic Resonance Imaging-Based Delineation of Organs at Risk in the Head and Neck Region.
    Paczona VR; Capala ME; Deák-Karancsi B; Borzási E; Együd Z; Végváry Z; Kelemen G; Kószó R; Ruskó L; Ferenczi L; Verduijn GM; Petit SF; Oláh J; Cserháti A; Wiesinger F; Hideghéty K
    Adv Radiat Oncol; 2023; 8(2):101042. PubMed ID: 36636382
    [TBL] [Abstract][Full Text] [Related]  

  • 72. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Automatic delineation of the clinical target volume and organs at risk by deep learning for rectal cancer postoperative radiotherapy.
    Song Y; Hu J; Wu Q; Xu F; Nie S; Zhao Y; Bai S; Yi Z
    Radiother Oncol; 2020 Apr; 145():186-192. PubMed ID: 32044531
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The use of new delineation tool "MIRADA" at the level of regional lymph nodes, step-by-step development and first results for early-stage breast cancer patients.
    Xu H; Arsene Henry A; Robillard M; Amessis M; Kirova YM
    Br J Radiol; 2018 Oct; 91(1090):20180095. PubMed ID: 29947264
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A simplified CT-based definition of the supraclavicular and infraclavicular nodal volumes in breast cancer.
    Atean I; Pointreau Y; Ouldamer L; Monghal C; Bougnoux A; Bera G; Barillot I
    Cancer Radiother; 2013 Feb; 17(1):39-43. PubMed ID: 23333457
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Benefits of deep learning for delineation of organs at risk in head and neck cancer.
    van der Veen J; Willems S; Deschuymer S; Robben D; Crijns W; Maes F; Nuyts S
    Radiother Oncol; 2019 Sep; 138():68-74. PubMed ID: 31146073
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Retrospective Validation and Clinical Implementation of Automated Contouring of Organs at Risk in the Head and Neck: A Step Toward Automated Radiation Treatment Planning for Low- and Middle-Income Countries.
    McCarroll RE; Beadle BM; Balter PA; Burger H; Cardenas CE; Dalvie S; Followill DS; Kisling KD; Mejia M; Naidoo K; Nelson CL; Peterson CB; Vorster K; Wetter J; Zhang L; Court LE; Yang J
    J Glob Oncol; 2018 Jul; 4():1-11. PubMed ID: 30110221
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Consensus Contouring Guidelines for Postoperative Completely Resected Cavity Stereotactic Radiosurgery for Brain Metastases.
    Soliman H; Ruschin M; Angelov L; Brown PD; Chiang VLS; Kirkpatrick JP; Lo SS; Mahajan A; Oh KS; Sheehan JP; Soltys SG; Sahgal A
    Int J Radiat Oncol Biol Phys; 2018 Feb; 100(2):436-442. PubMed ID: 29157748
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Automatic Substitute Computed Tomography Generation and Contouring for Magnetic Resonance Imaging (MRI)-Alone External Beam Radiation Therapy From Standard MRI Sequences.
    Dowling JA; Sun J; Pichler P; Rivest-Hénault D; Ghose S; Richardson H; Wratten C; Martin J; Arm J; Best L; Chandra SS; Fripp J; Menk FW; Greer PB
    Int J Radiat Oncol Biol Phys; 2015 Dec; 93(5):1144-53. PubMed ID: 26581150
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.