These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 24674877)

  • 1. I-V characteristics of short superconducting nanowires with different bias and shunt: a dynamic approach.
    Lin SZ; Bulaevskii LN
    J Phys Condens Matter; 2014 Apr; 26(15):155703. PubMed ID: 24674877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gated mode superconducting nanowire single photon detectors.
    Akhlaghi MK; Majedi AH
    Opt Express; 2012 Jan; 20(2):1608-16. PubMed ID: 22274503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orthogonal sequencing multiplexer for superconducting nanowire single-photon detectors with RSFQ electronics readout circuit.
    Hofherr M; Wetzstein O; Engert S; Ortlepp T; Berg B; Ilin K; Henrich D; Stolz R; Toepfer H; Meyer HG; Siegel M
    Opt Express; 2012 Dec; 20(27):28683-97. PubMed ID: 23263106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of superconducting contacts for the CRESST II 66-channel superconducting quantum interference device readout system.
    Majorovits B; Henry S; Kraus H
    Rev Sci Instrum; 2007 Jul; 78(7):073301. PubMed ID: 17672757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanotube, graphene, nanowire, and molecule-based electron and spin transport phenomena using the nonequilibrium Green's function method at the level of first principles theory.
    Kim WY; Kim KS
    J Comput Chem; 2008 May; 29(7):1073-83. PubMed ID: 18072178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of ionized impurity scattering on the thermopower of Si nanowires.
    Oh JH; Jang MG; Shin M
    J Phys Condens Matter; 2013 Dec; 25(50):505301. PubMed ID: 24219975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resolving in situ specific-contact, current-crowding, and channel resistivity in nanowire devices: a case study with silver nanowires.
    Koleśnik MM; Hansel S; Lutz T; Kinahan N; Boese M; Krstić V
    Small; 2011 Oct; 7(20):2873-7. PubMed ID: 21901823
    [No Abstract]   [Full Text] [Related]  

  • 8. An atomistic model and key parameters for devising single molecular nanowire sensors.
    Lou P; Lee JY
    Phys Chem Chem Phys; 2008 Feb; 10(6):828-33. PubMed ID: 18231685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resistive-switching crossbar memory based on Ni-NiO core-shell nanowires.
    Cagli C; Nardi F; Harteneck B; Tan Z; Zhang Y; Ielmini D
    Small; 2011 Oct; 7(20):2899-905. PubMed ID: 21874659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum interference device made by DNA templating of superconducting nanowires.
    Hopkins DS; Pekker D; Goldbart PM; Bezryadin A
    Science; 2005 Jun; 308(5729):1762-5. PubMed ID: 15961664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence correlation spectroscopy with visible-wavelength superconducting nanowire single-photon detector.
    Yamashita T; Liu D; Miki S; Yamamoto J; Haraguchi T; Kinjo M; Hiraoka Y; Wang Z; Terai H
    Opt Express; 2014 Nov; 22(23):28783-9. PubMed ID: 25402117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum and thermal phase slips in superconducting niobium nitride (NbN) ultrathin crystalline nanowire: application to single photon detection.
    Delacour C; Pannetier B; Villegier JC; Bouchiat V
    Nano Lett; 2012 Jul; 12(7):3501-6. PubMed ID: 22694480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance, all-solution-processed organic nanowire transistor arrays with inkjet-printing patterned electrodes.
    Liu N; Zhou Y; Ai N; Luo C; Peng J; Wang J; Pei J; Cao Y
    Langmuir; 2011 Dec; 27(24):14710-5. PubMed ID: 22043855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Programmed assembly of DNA-coated nanowire devices.
    Morrow TJ; Li M; Kim J; Mayer TS; Keating CD
    Science; 2009 Jan; 323(5912):352. PubMed ID: 19150837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulse-loaded ferroelectric nanowire as an alternating current source.
    Zheng Y; Woo CH; Wang B
    Nano Lett; 2008 Oct; 8(10):3131-6. PubMed ID: 18781805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conjugate feedback induced suppression and generation of oscillations in the Chua circuit: experiments and simulations.
    Mandal T; Singla T; Rivera M; Parmananda P
    Chaos; 2013 Mar; 23(1):013130. PubMed ID: 23556967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superconducting nanowires fabricated using molecular templates.
    Bezryadin A; Goldbart PM
    Adv Mater; 2010 Mar; 22(10):1111-21. PubMed ID: 20401935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity of a superconducting nanowire detector for single ions at low energy.
    Sclafani M; Marksteiner M; Keir FM; Divochiy A; Korneev A; Semenov A; Gol'tsman G; Arndt M
    Nanotechnology; 2012 Feb; 23(6):065501. PubMed ID: 22248823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inherent stochasticity of superconductor-resistor switching behavior in nanowires.
    Shah N; Pekker D; Goldbart PM
    Phys Rev Lett; 2008 Nov; 101(20):207001. PubMed ID: 19113368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoinduced formation of electrically conductive thin palladium nanowires on DNA scaffolds.
    Kundu S; Wang K; Huitink D; Liang H
    Langmuir; 2009 Sep; 25(17):10146-52. PubMed ID: 19425561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.