BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 24674948)

  • 1. An enzyme-coupled assay measuring acetate production for profiling histone deacetylase specificity.
    Wolfson NA; Pitcairn CA; Sullivan ED; Joseph CG; Fierke CA
    Anal Biochem; 2014 Jul; 456():61-9. PubMed ID: 24674948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HDAC8 substrate selectivity is determined by long- and short-range interactions leading to enhanced reactivity for full-length histone substrates compared with peptides.
    Castañeda CA; Wolfson NA; Leng KR; Kuo YM; Andrews AJ; Fierke CA
    J Biol Chem; 2017 Dec; 292(52):21568-21577. PubMed ID: 29109148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HDAC8 Catalyzes the Hydrolysis of Long Chain Fatty Acyl Lysine.
    Aramsangtienchai P; Spiegelman NA; He B; Miller SP; Dai L; Zhao Y; Lin H
    ACS Chem Biol; 2016 Oct; 11(10):2685-2692. PubMed ID: 27459069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases.
    Borra MT; Langer MR; Slama JT; Denu JM
    Biochemistry; 2004 Aug; 43(30):9877-87. PubMed ID: 15274642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetate supplementation increases brain histone acetylation and inhibits histone deacetylase activity and expression.
    Soliman ML; Rosenberger TA
    Mol Cell Biochem; 2011 Jun; 352(1-2):173-80. PubMed ID: 21359531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The activity of HDAC8 depends on local and distal sequences of its peptide substrates.
    Gurard-Levin ZA; Mrksich M
    Biochemistry; 2008 Jun; 47(23):6242-50. PubMed ID: 18470998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the Sensitivity of NAD+-dependent Sirtuin Deacylation Activities to NADH.
    Madsen AS; Andersen C; Daoud M; Anderson KA; Laursen JS; Chakladar S; Huynh FK; Colaço AR; Backos DS; Fristrup P; Hirschey MD; Olsen CA
    J Biol Chem; 2016 Mar; 291(13):7128-41. PubMed ID: 26861872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput screening of histone deacetylases and determination of kinetic parameters using fluorogenic assays.
    Moreno-Yruela C; Olsen CA
    STAR Protoc; 2021 Mar; 2(1):100313. PubMed ID: 33659897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histone deacetylase activity assay.
    Peng L; Yuan Z; Seto E
    Methods Mol Biol; 2015; 1288():95-108. PubMed ID: 25827877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Members of the histone deacetylase superfamily differ in substrate specificity towards small synthetic substrates.
    Riester D; Wegener D; Hildmann C; Schwienhorst A
    Biochem Biophys Res Commun; 2004 Nov; 324(3):1116-23. PubMed ID: 15485670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A homogeneous cellular histone deacetylase assay suitable for compound profiling and robotic screening.
    Ciossek T; Julius H; Wieland H; Maier T; Beckers T
    Anal Biochem; 2008 Jan; 372(1):72-81. PubMed ID: 17868634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic assays for NAD-dependent deacetylase activities.
    Landry J; Sternglanz R
    Methods; 2003 Sep; 31(1):33-9. PubMed ID: 12893171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active Site Metal Identity Alters Histone Deacetylase 8 Substrate Selectivity: A Potential Novel Regulatory Mechanism.
    Castaneda CA; Lopez JE; Joseph CG; Scholle MD; Mrksich M; Fierke CA
    Biochemistry; 2017 Oct; 56(42):5663-5670. PubMed ID: 28937750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetanilide and bromoacetyl-lysine derivatives as activators for human histone deacetylase 8.
    Mukhtar YM; Huang Y; Liu J; Chen D; Zheng W
    Bioorg Med Chem Lett; 2017 Jun; 27(11):2319-2323. PubMed ID: 28442255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and Biochemical Analysis of Classical Histone Deacetylases.
    Villagra A; Sahakian E; Seto E
    Methods Enzymol; 2016; 573():161-81. PubMed ID: 27372753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Fluorescence-Lifetime-Based Binding Assay for Class IIa Histone Deacetylases.
    Meyners C; Mertens M; Wessig P; Meyer-Almes FJ
    Chemistry; 2017 Mar; 23(13):3107-3116. PubMed ID: 27922200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bioluminogenic HDAC activity assay: validation and screening.
    Halley F; Reinshagen J; Ellinger B; Wolf M; Niles AL; Evans NJ; Kirkland TA; Wagner JM; Jung M; Gribbon P; Gul S
    J Biomol Screen; 2011 Dec; 16(10):1227-35. PubMed ID: 21832257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and enzymatic assay of class I histone deacetylase enzymes.
    Adams MK; Banks CAS; Miah S; Killer M; Washburn MP
    Methods Enzymol; 2019; 626():23-40. PubMed ID: 31606077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Erasers of histone acetylation: the histone deacetylase enzymes.
    Seto E; Yoshida M
    Cold Spring Harb Perspect Biol; 2014 Apr; 6(4):a018713. PubMed ID: 24691964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide-Based Fluorescent Probes for Deacetylase and Decrotonylase Activity: Toward a General Platform for Real-Time Detection of Lysine Deacylation.
    Rooker DR; Klyubka Y; Gautam R; Tomat E; Buccella D
    Chembiochem; 2018 Mar; 19(5):496-504. PubMed ID: 29235227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.