BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 24675179)

  • 1. Synthesis, cytotoxicity and molecular modelling studies of new phenylcinnamide derivatives as potent inhibitors of cholinesterases.
    Saeed A; Mahesar PA; Zaib S; Khan MS; Matin A; Shahid M; Iqbal J
    Eur J Med Chem; 2014 May; 78():43-53. PubMed ID: 24675179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active compounds from a diverse library of triazolothiadiazole and triazolothiadiazine scaffolds: synthesis, crystal structure determination, cytotoxicity, cholinesterase inhibitory activity, and binding mode analysis.
    Khan I; Ibrar A; Zaib S; Ahmad S; Furtmann N; Hameed S; Simpson J; Bajorath J; Iqbal J
    Bioorg Med Chem; 2014 Nov; 22(21):6163-73. PubMed ID: 25257911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis, crystal structure and biological evaluation of some novel 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles and 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazines.
    Khan I; Zaib S; Ibrar A; Rama NH; Simpson J; Iqbal J
    Eur J Med Chem; 2014 May; 78():167-77. PubMed ID: 24681981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis, preliminarily biological evaluation and molecular docking study of new Olaparib analogues as multifunctional PARP-1 and cholinesterase inhibitors.
    Gao CZ; Dong W; Cui ZW; Yuan Q; Hu XM; Wu QM; Han X; Xu Y; Min ZL
    J Enzyme Inhib Med Chem; 2019 Dec; 34(1):150-162. PubMed ID: 30427217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel coumarin-3-carboxamides bearing N-benzylpiperidine moiety as potent acetylcholinesterase inhibitors.
    Asadipour A; Alipour M; Jafari M; Khoobi M; Emami S; Nadri H; Sakhteman A; Moradi A; Sheibani V; Homayouni Moghadam F; Shafiee A; Foroumadi A
    Eur J Med Chem; 2013; 70():623-30. PubMed ID: 24211638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Syntheses, cholinesterases inhibition, and molecular docking studies of pyrido[2,3-b]pyrazine derivatives.
    Hameed A; Zehra ST; Shah SJ; Khan KM; Alharthy RD; Furtmann N; Bajorath J; Tahir MN; Iqbal J
    Chem Biol Drug Des; 2015 Nov; 86(5):1115-20. PubMed ID: 25951978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quinolizidinyl derivatives of bi- and tricyclic systems as potent inhibitors of acetyl- and butyrylcholinesterase with potential in Alzheimer's disease.
    Tasso B; Catto M; Nicolotti O; Novelli F; Tonelli M; Giangreco I; Pisani L; Sparatore A; Boido V; Carotti A; Sparatore F
    Eur J Med Chem; 2011 Jun; 46(6):2170-84. PubMed ID: 21459491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis, cholinesterase inhibition and molecular modelling studies of coumarin linked thiourea derivatives.
    Saeed A; Zaib S; Ashraf S; Iftikhar J; Muddassar M; Zhang KY; Iqbal J
    Bioorg Chem; 2015 Dec; 63():58-63. PubMed ID: 26440714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 7-MEOTA-donepezil like compounds as cholinesterase inhibitors: Synthesis, pharmacological evaluation, molecular modeling and QSAR studies.
    Korabecny J; Dolezal R; Cabelova P; Horova A; Hruba E; Ricny J; Sedlacek L; Nepovimova E; Spilovska K; Andrs M; Musilek K; Opletalova V; Sepsova V; Ripova D; Kuca K
    Eur J Med Chem; 2014 Jul; 82():426-38. PubMed ID: 24929293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural modifications of 4-aryl-4-oxo-2-aminylbutanamides and their acetyl- and butyrylcholinesterase inhibitory activity. Investigation of AChE-ligand interactions by docking calculations and molecular dynamics simulations.
    Vitorović-Todorović MD; Koukoulitsa C; Juranić IO; Mandić LM; Drakulić BJ
    Eur J Med Chem; 2014 Jun; 81():158-75. PubMed ID: 24836068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and evaluation of 4-substituted coumarins as novel acetylcholinesterase inhibitors.
    Razavi SF; Khoobi M; Nadri H; Sakhteman A; Moradi A; Emami S; Foroumadi A; Shafiee A
    Eur J Med Chem; 2013 Jun; 64():252-9. PubMed ID: 23644208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation, anticholinesterase activity and molecular docking of new lupane derivatives.
    Castro MJ; Richmond V; Romero C; Maier MS; Estévez-Braun A; Ravelo AG; Faraoni MB; Murray AP
    Bioorg Med Chem; 2014 Jul; 22(13):3341-50. PubMed ID: 24835788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New pyridine derivatives as inhibitors of acetylcholinesterase and amyloid aggregation.
    Pandolfi F; De Vita D; Bortolami M; Coluccia A; Di Santo R; Costi R; Andrisano V; Alabiso F; Bergamini C; Fato R; Bartolini M; Scipione L
    Eur J Med Chem; 2017 Dec; 141():197-210. PubMed ID: 29031067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 4-Aryl-4-oxo-N-phenyl-2-aminylbutyramides as acetyl- and butyrylcholinesterase inhibitors. Preparation, anticholinesterase activity, docking study, and 3D structure-activity relationship based on molecular interaction fields.
    Vitorović-Todorović MD; Juranić IO; Mandić LM; Drakulić BJ
    Bioorg Med Chem; 2010 Feb; 18(3):1181-93. PubMed ID: 20061157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, structural characterization, docking, lipophilicity and cytotoxicity of 1-[(1R)-1-(6-fluoro-1,3-benzothiazol-2-yl)ethyl]-3-alkyl carbamates, novel acetylcholinesterase and butyrylcholinesterase pseudo-irreversible inhibitors.
    Pejchal V; Štěpánková Š; Pejchalová M; Královec K; Havelek R; Růžičková Z; Ajani H; Lo R; Lepšík M
    Bioorg Med Chem; 2016 Apr; 24(7):1560-72. PubMed ID: 26947959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholinesterases inhibition and molecular modeling studies of piperidyl-thienyl and 2-pyrazoline derivatives of chalcones.
    Shah MS; Khan SU; Ejaz SA; Afridi S; Rizvi SUF; Najam-Ul-Haq M; Iqbal J
    Biochem Biophys Res Commun; 2017 Jan; 482(4):615-624. PubMed ID: 27865835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and synthesis of some new carboxamide and propanamide derivatives bearing phenylpyridazine as a core ring and the investigation of their inhibitory potential on in-vitro acetylcholinesterase and butyrylcholinesterase.
    Kilic B; Gulcan HO; Aksakal F; Ercetin T; Oruklu N; Umit Bagriacik E; Dogruer DS
    Bioorg Chem; 2018 Sep; 79():235-249. PubMed ID: 29775949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New piperidine-hydrazone derivatives: Synthesis, biological evaluations and molecular docking studies as AChE and BChE inhibitors.
    Karaman N; Sıcak Y; Taşkın-Tok T; Öztürk M; Karaküçük-İyidoğan A; Dikmen M; Koçyiğit-Kaymakçıoğlu B; Oruç-Emre EE
    Eur J Med Chem; 2016 Nov; 124():270-283. PubMed ID: 27592396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indolinone-based acetylcholinesterase inhibitors: synthesis, biological activity and molecular modeling.
    Akrami H; Mirjalili BF; Khoobi M; Nadri H; Moradi A; Sakhteman A; Emami S; Foroumadi A; Shafiee A
    Eur J Med Chem; 2014 Sep; 84():375-81. PubMed ID: 25036795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino derivatives of glycyrrhetinic acid as potential inhibitors of cholinesterases.
    Schwarz S; Lucas SD; Sommerwerk S; Csuk R
    Bioorg Med Chem; 2014 Jul; 22(13):3370-8. PubMed ID: 24853320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.