These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 24675556)

  • 1. Trans-generational plasticity in physiological thermal tolerance is modulated by maternal pre-reproductive environment in the polychaete Ophryotrocha labronica.
    Massamba-N'Siala G; Prevedelli D; Simonini R
    J Exp Biol; 2014 Jun; 217(Pt 11):2004-12. PubMed ID: 24675556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bet hedging in a warming ocean: predictability of maternal environment shapes offspring size variation in marine sticklebacks.
    Shama LN
    Glob Chang Biol; 2015 Dec; 21(12):4387-400. PubMed ID: 26183221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature-induced maternal effects and environmental predictability.
    Burgess SC; Marshall DJ
    J Exp Biol; 2011 Jul; 214(Pt 14):2329-36. PubMed ID: 21697424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geographical differences in maternal basking behaviour and offspring growth rate in a climatically widespread viviparous reptile.
    Cadby CD; Jones SM; Wapstra E
    J Exp Biol; 2014 Apr; 217(Pt 7):1175-9. PubMed ID: 24311810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Life-history trade-offs and limitations associated with phenotypic adaptation under future ocean warming and elevated salinity.
    Jarrold MD; Chakravarti LJ; Gibbin EM; Christen F; Massamba-N'Siala G; Blier PU; Calosi P
    Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1768):20180428. PubMed ID: 30966961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-generational environmental effects and the evolution of offspring size in the Trinidadian guppy Poecilia reticulata.
    Bashey F
    Evolution; 2006 Feb; 60(2):348-61. PubMed ID: 16610325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maternal effects, maternal body size and offspring energetics: a study in the common woodlouse Porcellio laevis.
    Bacigalupe LD; Araya NM; Carter MJ; Catalán TP; Lardies MA; Bozinovic F
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Jun; 147(2):349-54. PubMed ID: 17276116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal plasticity due to parental and early-life environments in the jacky dragon (Amphibolurus muricatus).
    So CKJ; Schwanz LE
    J Exp Zool A Ecol Integr Physiol; 2018 Jul; 329(6-7):308-316. PubMed ID: 29938929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid thermal responses and thermal tolerance in adult codling moth Cydia pomonella (Lepidoptera: Tortricidae).
    Chidawanyika F; Terblanche JS
    J Insect Physiol; 2011 Jan; 57(1):108-17. PubMed ID: 20933517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming.
    Magozzi S; Calosi P
    Glob Chang Biol; 2015 Jan; 21(1):181-94. PubMed ID: 25155644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The thrifty phenotype as an adaptive maternal effect.
    Wells JC
    Biol Rev Camb Philos Soc; 2007 Feb; 82(1):143-72. PubMed ID: 17313527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal preference and tolerance of alvinellids.
    Girguis PR; Lee RW
    Science; 2006 Apr; 312(5771):231. PubMed ID: 16614212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatty acid composition and extreme temperature tolerance following exposure to fluctuating temperatures in a soil arthropod.
    van Dooremalen C; Suring W; Ellers J
    J Insect Physiol; 2011 Sep; 57(9):1267-73. PubMed ID: 21704631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Why do colder mothers produce larger eggs? An optimality approach.
    Bownds C; Wilson R; Marshall DJ
    J Exp Biol; 2010 Nov; 213(Pt 22):3796-801. PubMed ID: 21037058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex response in size-related traits of bulb mites (Rhizoglyphus robini) under elevated thermal conditions - an experimental evolution approach.
    Plesnar-Bielak A; Jawor A; Kramarz PE
    J Exp Biol; 2013 Dec; 216(Pt 24):4542-8. PubMed ID: 24031061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal tolerance in widespread and tropical Drosophila species: does phenotypic plasticity increase with latitude?
    Overgaard J; Kristensen TN; Mitchell KA; Hoffmann AA
    Am Nat; 2011 Oct; 178 Suppl 1():S80-96. PubMed ID: 21956094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects on fetal and maternal body temperatures of exposure of pregnant ewes to heat, cold, and exercise.
    Laburn HP; Faurie A; Goelst K; Mitchell D
    J Appl Physiol (1985); 2002 Feb; 92(2):802-8. PubMed ID: 11796695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature and UV-B-insensitive performance in tadpoles of the ornate burrowing frog: an ephemeral pond specialist.
    Kern P; Cramp RL; Franklin CE
    J Exp Biol; 2014 Apr; 217(Pt 8):1246-52. PubMed ID: 24363412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can multi-generational exposure to ocean warming and acidification lead to the adaptation of life history and physiology in a marine metazoan?
    Gibbin EM; Chakravarti LJ; Jarrold MD; Christen F; Turpin V; Massamba N'Siala G; Blier PU; Calosi P
    J Exp Biol; 2017 Feb; 220(Pt 4):551-563. PubMed ID: 27903701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IL-6 immunoreactivity changes during aging in the polychaete Ophryotrocha labronica (Polychaeta: Dorvilleidae).
    Franchini A; Ottaviani E
    Tissue Cell; 2007 Feb; 39(1):27-34. PubMed ID: 17258255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.