These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 24675558)
1. Mexican blind cavefish use mouth suction to detect obstacles. Holzman R; Perkol-Finkel S; Zilman G J Exp Biol; 2014 Jun; 217(Pt 11):1955-62. PubMed ID: 24675558 [TBL] [Abstract][Full Text] [Related]
2. The lateral line system is not necessary for rheotaxis in the Mexican blind cavefish (Astyanax fasciatus). Van Trump WJ; McHenry MJ Integr Comp Biol; 2013 Nov; 53(5):799-809. PubMed ID: 23722083 [TBL] [Abstract][Full Text] [Related]
3. The flow fields involved in hydrodynamic imaging by blind Mexican cave fish (Astyanax fasciatus). Part I: open water and heading towards a wall. Windsor SP; Norris SE; Cameron SM; Mallinson GD; Montgomery JC J Exp Biol; 2010 Nov; 213(Pt 22):3819-31. PubMed ID: 21037061 [TBL] [Abstract][Full Text] [Related]
4. The sensitivity of lateral line receptors and their role in the behavior of Mexican blind cavefish (Astyanax mexicanus). Yoshizawa M; Jeffery WR; van Netten SM; McHenry MJ J Exp Biol; 2014 Mar; 217(Pt 6):886-95. PubMed ID: 24265419 [TBL] [Abstract][Full Text] [Related]
5. Swimming kinematics and hydrodynamic imaging in the blind Mexican cave fish (Astyanax fasciatus). Windsor SP; Tan D; Montgomery JC J Exp Biol; 2008 Sep; 211(Pt 18):2950-9. PubMed ID: 18775932 [TBL] [Abstract][Full Text] [Related]
6. The flow fields involved in hydrodynamic imaging by blind Mexican cave fish (Astyanax fasciatus). Part II: gliding parallel to a wall. Windsor SP; Norris SE; Cameron SM; Mallinson GD; Montgomery JC J Exp Biol; 2010 Nov; 213(Pt 22):3832-42. PubMed ID: 21037062 [TBL] [Abstract][Full Text] [Related]
7. Temporal precision and reliability in the velocity regime of a hair-cell sensory system: the mechanosensory lateral line of goldfish, Carassius auratus. Goulet J; van Hemmen JL; Jung SN; Chagnaud BP; Scholze B; Engelmann J J Neurophysiol; 2012 May; 107(10):2581-93. PubMed ID: 22378175 [TBL] [Abstract][Full Text] [Related]
8. Sensing the strike of a predator fish depends on the specific gravity of a prey fish. Stewart WJ; McHenry MJ J Exp Biol; 2010 Nov; 213(Pt 22):3769-77. PubMed ID: 21037055 [TBL] [Abstract][Full Text] [Related]
9. Man-made flows from a fish's perspective: autonomous classification of turbulent fishway flows with field data collected using an artificial lateral line. Tuhtan JA; Fuentes-Perez JF; Toming G; Schneider M; Schwarzenberger R; Schletterer M; Kruusmaa M Bioinspir Biomim; 2018 May; 13(4):046006. PubMed ID: 29629711 [TBL] [Abstract][Full Text] [Related]
10. The role of the lateral line in active drag reduction by clupeoid fishes. Lighthill J Symp Soc Exp Biol; 1995; 49():35-48. PubMed ID: 8571234 [TBL] [Abstract][Full Text] [Related]
11. The use of evoked potentials to determine sensory sub-modality contributions to acoustic and hydrodynamic sensing. Kibele CS; Montgomery JC; Radford CA J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2019 Dec; 205(6):855-865. PubMed ID: 31686133 [TBL] [Abstract][Full Text] [Related]
12. Social-like responses are inducible in asocial Mexican cavefish despite the exhibition of strong repetitive behavior. Iwashita M; Yoshizawa M Elife; 2021 Sep; 10():. PubMed ID: 34542411 [TBL] [Abstract][Full Text] [Related]
13. Prey fish escape by sensing the bow wave of a predator. Stewart WJ; Nair A; Jiang H; McHenry MJ J Exp Biol; 2014 Dec; 217(Pt 24):4328-36. PubMed ID: 25520384 [TBL] [Abstract][Full Text] [Related]
14. Spatial and temporal patterns of water flow generated by suction-feeding bluegill sunfish Lepomis macrochirus resolved by Particle Image Velocimetry. Day SW; Higham TE; Cheer AY; Wainwright PC J Exp Biol; 2005 Jul; 208(Pt 14):2661-71. PubMed ID: 16000536 [TBL] [Abstract][Full Text] [Related]
15. Multidimensional analysis of suction feeding performance in fishes: fluid speed, acceleration, strike accuracy and the ingested volume of water. Higham TE; Day SW; Wainwright PC J Exp Biol; 2006 Jul; 209(Pt 14):2713-25. PubMed ID: 16809462 [TBL] [Abstract][Full Text] [Related]
16. The lateral line confers evolutionarily derived sleep loss in the Mexican cavefish. Jaggard J; Robinson BG; Stahl BA; Oh I; Masek P; Yoshizawa M; Keene AC J Exp Biol; 2017 Jan; 220(Pt 2):284-293. PubMed ID: 28100806 [TBL] [Abstract][Full Text] [Related]
17. Suction feeding across fish life stages: flow dynamics from larvae to adults and implications for prey capture. Yaniv S; Elad D; Holzman R J Exp Biol; 2014 Oct; 217(Pt 20):3748-57. PubMed ID: 25189373 [TBL] [Abstract][Full Text] [Related]
18. Do blind cavefish have behavioral specializations for active flow-sensing? Tan D; Patton P; Coombs S J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Jul; 197(7):743-54. PubMed ID: 21431362 [TBL] [Abstract][Full Text] [Related]
19. The lateral line is necessary for blind cavefish rheotaxis in non-uniform flow. Kulpa M; Bak-Coleman J; Coombs S J Exp Biol; 2015 May; 218(Pt 10):1603-12. PubMed ID: 25827837 [TBL] [Abstract][Full Text] [Related]
20. Distributed flow estimation and closed-loop control of an underwater vehicle with a multi-modal artificial lateral line. DeVries L; Lagor FD; Lei H; Tan X; Paley DA Bioinspir Biomim; 2015 Mar; 10(2):025002. PubMed ID: 25807584 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]