These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 24675608)

  • 21. Characterization of Cu
    Engberg S; Symonowicz J; Schou J; Canulescu S; Jensen KMØ
    ACS Omega; 2020 May; 5(18):10501-10509. PubMed ID: 32426607
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The kesterite-stannite structural transition as a way to avoid Cu/Zn disorder in kesterites: the exemplary case of the Cu
    Gurieva G; Niedenzu S; Siminel N; Franz A; Schorr S
    Faraday Discuss; 2022 Oct; 239(0):51-69. PubMed ID: 35833715
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isostructural copper-zinc mixed metal complexes for single source deposition of Cu-ZnO composite thin films.
    Sultan M; Tahir AA; Mazhar M; Wijayantha KG; Zeller M
    Dalton Trans; 2011 Aug; 40(31):7889-97. PubMed ID: 21727943
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development and properties of surfactant-free water-dispersible Cu2ZnSnS4 nanocrystals: a material for low-cost photovoltaics.
    Kush P; Ujjain SK; Mehra NC; Jha P; Sharma RK; Deka S
    Chemphyschem; 2013 Aug; 14(12):2793-9. PubMed ID: 23801647
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermoelectric properties of CZTS thin films: effect of Cu-Zn disorder.
    Isotta E; Syafiq U; Ataollahi N; Chiappini A; Malerba C; Luong S; Trifiletti V; Fenwick O; Pugno NM; Scardi P
    Phys Chem Chem Phys; 2021 Jun; 23(23):13148-13158. PubMed ID: 34075978
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The synthesis and characterization of Cu
    Al-Shakban M; Matthews PD; Savjani N; Zhong XL; Wang Y; Missous M; O'Brien P
    J Mater Sci; 2017; 52(21):12761-12771. PubMed ID: 32025050
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Continuous production of Cu2ZnSnS4 nanocrystals in a flow reactor.
    Shavel A; Cadavid D; Ibáñez M; Carrete A; Cabot A
    J Am Chem Soc; 2012 Jan; 134(3):1438-41. PubMed ID: 22211575
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phase-controlled synthesis of Cu2ZnSnS4 nanocrystals: the role of reactivity between Zn and S.
    Zou Y; Su X; Jiang J
    J Am Chem Soc; 2013 Dec; 135(49):18377-84. PubMed ID: 24283701
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of the Order-Disorder Transition on the Seebeck Coefficient of Nanostructured Thermoelectric Cu
    Isotta E; Fanciulli C; Pugno NM; Scardi P
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31108991
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Understanding the origin of disorder in kesterite-type chalcogenides A
    Mangelis P; Aziz A; da Silva I; Grau-Crespo R; Vaqueiro P; Powell AV
    Phys Chem Chem Phys; 2019 Sep; 21(35):19311-19317. PubMed ID: 31451820
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Understanding the synthetic pathway of a single-phase quarternary semiconductor using surface-enhanced Raman scattering: a case of wurtzite Cu₂ZnSnS₄ nanoparticles.
    Tan JM; Lee YH; Pedireddy S; Baikie T; Ling XY; Wong LH
    J Am Chem Soc; 2014 May; 136(18):6684-92. PubMed ID: 24702183
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structures of thermoelectric n- and p-type Ba8Ga16Ge30 studied by single crystal, multitemperature, neutron diffraction, conventional X-ray diffraction and resonant synchrotron X-ray diffraction.
    Christensen M; Lock N; Overgaard J; Iversen BB
    J Am Chem Soc; 2006 Dec; 128(49):15657-65. PubMed ID: 17147375
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Systematic investigation of zinc aminoalkylphosphonates: influence of the alkyl chain lengths on the structure formation.
    Schmidt C; Stock N
    Inorg Chem; 2012 Mar; 51(5):3108-18. PubMed ID: 22324762
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phase-selective synthesis of Cu2ZnSnS4 nanocrystals using different sulfur precursors.
    Li Z; Lui AL; Lam KH; Xi L; Lam YM
    Inorg Chem; 2014 Oct; 53(20):10874-80. PubMed ID: 25264823
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mercurial possibilities: determining site distributions in Cu
    Bhattacharya A; Mishra V; Tkachuk DG; Mar A; Michaelis VK
    Phys Chem Chem Phys; 2022 Oct; 24(39):24306-24316. PubMed ID: 36172896
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Observation of antisite domain boundaries in Cu2ZnSnS4 by atomic-resolution transmission electron microscopy.
    Kattan NA; Griffiths IJ; Cherns D; Fermín DJ
    Nanoscale; 2016 Aug; 8(30):14369-73. PubMed ID: 27405278
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Magnetic symmetries in neutron and resonant x-ray Bragg diffraction patterns of four iridium oxides.
    Lovesey SW; Khalyavin DD; Manuel P; Chapon LC; Cao G; Qi TF
    J Phys Condens Matter; 2012 Dec; 24(49):496003. PubMed ID: 23160311
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of Cu
    Sahu M; Reddy VRM; Kim B; Patro B; Park C; Kim WK; Sharma P
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268937
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controllable Multinary Alloy Electrodeposition for Thin-Film Solar Cell Fabrication: A Case Study of Kesterite Cu
    Ge J; Yan Y
    iScience; 2018 Mar; 1():55-71. PubMed ID: 30227957
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Trigonal Cu2-II-Sn-VI4 (II = Ba, Sr and VI = S, Se) quaternary compounds for earth-abundant photovoltaics.
    Hong F; Lin W; Meng W; Yan Y
    Phys Chem Chem Phys; 2016 Feb; 18(6):4828-34. PubMed ID: 26804024
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.