These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 24675649)

  • 1. Interplay between functional connectivity and scale-free dynamics in intrinsic fMRI networks.
    Ciuciu P; Abry P; He BJ
    Neuroimage; 2014 Jul; 95():248-63. PubMed ID: 24675649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early development of spatial patterns of power-law frequency scaling in FMRI resting-state and EEG data in the newborn brain.
    Fransson P; Metsäranta M; Blennow M; Åden U; Lagercrantz H; Vanhatalo S
    Cereb Cortex; 2013 Mar; 23(3):638-46. PubMed ID: 22402348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extrinsic and Intrinsic Brain Network Connectivity Maintains Cognition across the Lifespan Despite Accelerated Decay of Regional Brain Activation.
    Tsvetanov KA; Henson RN; Tyler LK; Razi A; Geerligs L; Ham TE; Rowe JB;
    J Neurosci; 2016 Mar; 36(11):3115-26. PubMed ID: 26985024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resting state networks in empirical and simulated dynamic functional connectivity.
    Glomb K; Ponce-Alvarez A; Gilson M; Ritter P; Deco G
    Neuroimage; 2017 Oct; 159():388-402. PubMed ID: 28782678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of resting-state functional connectivity using random subspace based partial correlation: a novel method for reducing global artifacts.
    Chen T; Ryali S; Qin S; Menon V
    Neuroimage; 2013 Nov; 82():87-100. PubMed ID: 23747287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-Time Resting-State Functional Magnetic Resonance Imaging Using Averaged Sliding Windows with Partial Correlations and Regression of Confounding Signals.
    Vakamudi K; Trapp C; Talaat K; Gao K; Sa De La Rocque Guimaraes B; Posse S
    Brain Connect; 2020 Oct; 10(8):448-463. PubMed ID: 32892629
    [No Abstract]   [Full Text] [Related]  

  • 7. Broadband Electrophysiological Dynamics Contribute to Global Resting-State fMRI Signal.
    Wen H; Liu Z
    J Neurosci; 2016 Jun; 36(22):6030-40. PubMed ID: 27251624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scale-Free and Multifractal Time Dynamics of fMRI Signals during Rest and Task.
    Ciuciu P; Varoquaux G; Abry P; Sadaghiani S; Kleinschmidt A
    Front Physiol; 2012; 3():186. PubMed ID: 22715328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical power and prediction accuracy in multisite resting-state fMRI connectivity.
    Dansereau C; Benhajali Y; Risterucci C; Pich EM; Orban P; Arnold D; Bellec P
    Neuroimage; 2017 Apr; 149():220-232. PubMed ID: 28161310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-similarity and multifractality in human brain activity: A wavelet-based analysis of scale-free brain dynamics.
    La Rocca D; Zilber N; Abry P; van Wassenhove V; Ciuciu P
    J Neurosci Methods; 2018 Nov; 309():175-187. PubMed ID: 30213548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directional patterns of cross frequency phase and amplitude coupling within the resting state mimic patterns of fMRI functional connectivity.
    Weaver KE; Wander JD; Ko AL; Casimo K; Grabowski TJ; Ojemann JG; Darvas F
    Neuroimage; 2016 Mar; 128():238-251. PubMed ID: 26747745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Periodic changes in fMRI connectivity.
    Handwerker DA; Roopchansingh V; Gonzalez-Castillo J; Bandettini PA
    Neuroimage; 2012 Nov; 63(3):1712-9. PubMed ID: 22796990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-frequency dynamics of resting-state brain connectivity measured with fMRI.
    Chang C; Glover GH
    Neuroimage; 2010 Mar; 50(1):81-98. PubMed ID: 20006716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time scale properties of task and resting-state functional connectivity: Detrended partial cross-correlation analysis.
    Ide JS; Li CR
    Neuroimage; 2018 Jun; 173():240-248. PubMed ID: 29454934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain.
    van den Heuvel MP; Stam CJ; Boersma M; Hulshoff Pol HE
    Neuroimage; 2008 Nov; 43(3):528-39. PubMed ID: 18786642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sparse SPM: Group Sparse-dictionary learning in SPM framework for resting-state functional connectivity MRI analysis.
    Lee YB; Lee J; Tak S; Lee K; Na DL; Seo SW; Jeong Y; Ye JC;
    Neuroimage; 2016 Jan; 125():1032-1045. PubMed ID: 26524138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biophysical and neural basis of resting state functional connectivity: Evidence from non-human primates.
    Chen LM; Yang PF; Wang F; Mishra A; Shi Z; Wu R; Wu TL; Wilson GH; Ding Z; Gore JC
    Magn Reson Imaging; 2017 Jun; 39():71-81. PubMed ID: 28161319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is Rest Really Rest? Resting-State Functional Connectivity During Rest and Motor Task Paradigms.
    Jurkiewicz MT; Crawley AP; Mikulis DJ
    Brain Connect; 2018 Jun; 8(5):268-275. PubMed ID: 29665711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale intrinsic connectivity is consistent across varying task demands.
    Kieliba P; Madugula S; Filippini N; Duff EP; Makin TR
    PLoS One; 2019; 14(4):e0213861. PubMed ID: 30970031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereotypical modulations in dynamic functional connectivity explained by changes in BOLD variance.
    Glomb K; Ponce-Alvarez A; Gilson M; Ritter P; Deco G
    Neuroimage; 2018 May; 171():40-54. PubMed ID: 29294385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.