These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 24675649)

  • 21. Complexity of low-frequency blood oxygen level-dependent fluctuations covaries with local connectivity.
    Anderson JS; Zielinski BA; Nielsen JA; Ferguson MA
    Hum Brain Mapp; 2014 Apr; 35(4):1273-83. PubMed ID: 23417795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A variance components model for statistical inference on functional connectivity networks.
    Fiecas M; Cribben I; Bahktiari R; Cummine J
    Neuroimage; 2017 Apr; 149():256-266. PubMed ID: 28130192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Manipulating brain connectivity with δ⁹-tetrahydrocannabinol: a pharmacological resting state FMRI study.
    Klumpers LE; Cole DM; Khalili-Mahani N; Soeter RP; Te Beek ET; Rombouts SA; van Gerven JM
    Neuroimage; 2012 Nov; 63(3):1701-11. PubMed ID: 22885247
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neurometrics of intrinsic connectivity networks at rest using fMRI: retest reliability and cross-validation using a meta-level method.
    Wisner KM; Atluri G; Lim KO; Macdonald AW
    Neuroimage; 2013 Aug; 76():236-51. PubMed ID: 23507379
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tracking whole-brain connectivity dynamics in the resting state.
    Allen EA; Damaraju E; Plis SM; Erhardt EB; Eichele T; Calhoun VD
    Cereb Cortex; 2014 Mar; 24(3):663-76. PubMed ID: 23146964
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest.
    Leonardi N; Richiardi J; Gschwind M; Simioni S; Annoni JM; Schluep M; Vuilleumier P; Van De Ville D
    Neuroimage; 2013 Dec; 83():937-50. PubMed ID: 23872496
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of local network oscillations in resting-state functional connectivity.
    Cabral J; Hugues E; Sporns O; Deco G
    Neuroimage; 2011 Jul; 57(1):130-139. PubMed ID: 21511044
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Resting-State fMRI Functional Connectivity Is Associated with Sleepiness, Imagery, and Discontinuity of Mind.
    Stoffers D; Diaz BA; Chen G; den Braber A; van 't Ent D; Boomsma DI; Mansvelder HD; de Geus E; Van Someren EJ; Linkenkaer-Hansen K
    PLoS One; 2015; 10(11):e0142014. PubMed ID: 26540239
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantifying temporal correlations: a test-retest evaluation of functional connectivity in resting-state fMRI.
    Fiecas M; Ombao H; van Lunen D; Baumgartner R; Coimbra A; Feng D
    Neuroimage; 2013 Jan; 65():231-41. PubMed ID: 23032492
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest.
    van de Ven VG; Formisano E; Prvulovic D; Roeder CH; Linden DE
    Hum Brain Mapp; 2004 Jul; 22(3):165-78. PubMed ID: 15195284
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Statistical parametric network analysis of functional connectivity dynamics during a working memory task.
    Ginestet CE; Simmons A
    Neuroimage; 2011 Mar; 55(2):688-704. PubMed ID: 21095229
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intrinsic, dynamic and effective connectivity among large-scale brain networks modulated by oxytocin.
    Jiang X; Ma X; Geng Y; Zhao Z; Zhou F; Zhao W; Yao S; Yang S; Zhao Z; Becker B; Kendrick KM
    Neuroimage; 2021 Feb; 227():117668. PubMed ID: 33359350
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of spatio-temporal decomposition techniques for group analysis of fMRI resting state data sets.
    Afshin-Pour B; Grady C; Strother S
    Neuroimage; 2014 Feb; 87():363-82. PubMed ID: 24201012
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of resting state condition on reliability, trait specificity, and network connectivity of brain function measured with arterial spin labeled perfusion MRI.
    Li Z; Vidorreta M; Katchmar N; Alsop DC; Wolf DH; Detre JA
    Neuroimage; 2018 Jun; 173():165-175. PubMed ID: 29454933
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic fluctuations coincide with periods of high and low modularity in resting-state functional brain networks.
    Betzel RF; Fukushima M; He Y; Zuo XN; Sporns O
    Neuroimage; 2016 Feb; 127():287-297. PubMed ID: 26687667
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Varieties of semantic cognition revealed through simultaneous decomposition of intrinsic brain connectivity and behaviour.
    Vatansever D; Bzdok D; Wang HT; Mollo G; Sormaz M; Murphy C; Karapanagiotidis T; Smallwood J; Jefferies E
    Neuroimage; 2017 Sep; 158():1-11. PubMed ID: 28655631
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting intrinsic brain activity.
    Craddock RC; Milham MP; LaConte SM
    Neuroimage; 2013 Nov; 82():127-36. PubMed ID: 23707580
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional interactions in patients with hemianopia: A graph theory-based connectivity study of resting fMRI signal.
    Pedersini CA; Guàrdia-Olmos J; Montalà-Flaquer M; Cardobi N; Sanchez-Lopez J; Parisi G; Savazzi S; Marzi CA
    PLoS One; 2020; 15(1):e0226816. PubMed ID: 31905211
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploring connectivity with large-scale Granger causality on resting-state functional MRI.
    DSouza AM; Abidin AZ; Leistritz L; Wismüller A
    J Neurosci Methods; 2017 Aug; 287():68-79. PubMed ID: 28629720
    [TBL] [Abstract][Full Text] [Related]  

  • 40. AICHA: An atlas of intrinsic connectivity of homotopic areas.
    Joliot M; Jobard G; Naveau M; Delcroix N; Petit L; Zago L; Crivello F; Mellet E; Mazoyer B; Tzourio-Mazoyer N
    J Neurosci Methods; 2015 Oct; 254():46-59. PubMed ID: 26213217
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.