These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
331 related articles for article (PubMed ID: 24675749)
1. The tomato leucine-rich repeat receptor-like kinases SlSERK3A and SlSERK3B have overlapping functions in bacterial and nematode innate immunity. Peng HC; Kaloshian I PLoS One; 2014; 9(3):e93302. PubMed ID: 24675749 [TBL] [Abstract][Full Text] [Related]
2. SlBIR3 Negatively Regulates PAMP Responses and Cell Death in Tomato. Huang S; Nie S; Wang S; Liu J; Zhang Y; Wang X Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28902164 [TBL] [Abstract][Full Text] [Related]
3. The receptor-like kinase SlSERK1 is required for Mi-1-mediated resistance to potato aphids in tomato. Mantelin S; Peng HC; Li B; Atamian HS; Takken FL; Kaloshian I Plant J; 2011 Aug; 67(3):459-71. PubMed ID: 21481032 [TBL] [Abstract][Full Text] [Related]
4. SlSERK3B Promotes Tomato Seedling Growth and Development by Regulating Photosynthetic Capacity. Ding Z; Yao Y; Yao K; Hou X; Zhang Z; Huang Y; Wang C; Liao W Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38279340 [TBL] [Abstract][Full Text] [Related]
5. WRKY22 and WRKY25 transcription factors are positive regulators of defense responses in Nicotiana benthamiana. Ramos RN; Martin GB; Pombo MA; Rosli HG Plant Mol Biol; 2021 Jan; 105(1-2):65-82. PubMed ID: 32909182 [TBL] [Abstract][Full Text] [Related]
6. Tomato Sl3-MMP, a member of the Matrix metalloproteinase family, is required for disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000. Li D; Zhang H; Song Q; Wang L; Liu S; Hong Y; Huang L; Song F BMC Plant Biol; 2015 Jun; 15():143. PubMed ID: 26070456 [TBL] [Abstract][Full Text] [Related]
7. A virus-induced gene silencing screen identifies a role for Thylakoid Formation1 in Pseudomonas syringae pv tomato symptom development in tomato and Arabidopsis. Wangdi T; Uppalapati SR; Nagaraj S; Ryu CM; Bender CL; Mysore KS Plant Physiol; 2010 Jan; 152(1):281-92. PubMed ID: 19915014 [TBL] [Abstract][Full Text] [Related]
8. Allelic variation in two distinct Pseudomonas syringae flagellin epitopes modulates the strength of plant immune responses but not bacterial motility. Clarke CR; Chinchilla D; Hind SR; Taguchi F; Miki R; Ichinose Y; Martin GB; Leman S; Felix G; Vinatzer BA New Phytol; 2013 Nov; 200(3):847-860. PubMed ID: 23865782 [TBL] [Abstract][Full Text] [Related]
9. The oomycete microbe-associated molecular pattern Pep-13 triggers SERK3/BAK1-independent plant immunity. Wang H; He H; Qi Y; McLellan H; Tian Z; Birch PRJ; Tian Z Plant Cell Rep; 2019 Feb; 38(2):173-182. PubMed ID: 30488097 [TBL] [Abstract][Full Text] [Related]
10. Phytophthora infection signals-induced translocation of NAC089 is required for endoplasmic reticulum stress response-mediated plant immunity. Ai G; Zhu H; Fu X; Liu J; Li T; Cheng Y; Zhou Y; Yang K; Pan W; Zhang H; Wu Z; Dong S; Xia Y; Wang Y; Xia A; Wang Y; Dou D; Jing M Plant J; 2021 Oct; 108(1):67-80. PubMed ID: 34374485 [TBL] [Abstract][Full Text] [Related]
11. A root-knot nematode effector targets the Arabidopsis cysteine protease RD21A for degradation to suppress plant defense and promote parasitism. Yu J; Yuan Q; Chen C; Xu T; Jiang Y; Hu W; Liao A; Zhang J; Le X; Li H; Wang X Plant J; 2024 Jun; 118(5):1500-1515. PubMed ID: 38516730 [TBL] [Abstract][Full Text] [Related]
12. Tomato SR/CAMTA transcription factors SlSR1 and SlSR3L negatively regulate disease resistance response and SlSR1L positively modulates drought stress tolerance. Li X; Huang L; Zhang Y; Ouyang Z; Hong Y; Zhang H; Li D; Song F BMC Plant Biol; 2014 Oct; 14():286. PubMed ID: 25348703 [TBL] [Abstract][Full Text] [Related]
13. Tomato receptor-like cytoplasmic kinase Fir1 is involved in flagellin signaling and preinvasion immunity. Sobol G; Majhi BB; Pasmanik-Chor M; Zhang N; Roberts HM; Martin GB; Sessa G Plant Physiol; 2023 May; 192(1):565-581. PubMed ID: 36511947 [TBL] [Abstract][Full Text] [Related]
14. Bacillus cereus AR156 triggers induced systemic resistance against Pseudomonas syringae pv. tomato DC3000 by suppressing miR472 and activating CNLs-mediated basal immunity in Arabidopsis. Jiang C; Fan Z; Li Z; Niu D; Li Y; Zheng M; Wang Q; Jin H; Guo J Mol Plant Pathol; 2020 Jun; 21(6):854-870. PubMed ID: 32227587 [TBL] [Abstract][Full Text] [Related]
15. Jasmonate ZIM-domain (JAZ) protein regulates host and nonhost pathogen-induced cell death in tomato and Nicotiana benthamiana. Ishiga Y; Ishiga T; Uppalapati SR; Mysore KS PLoS One; 2013; 8(9):e75728. PubMed ID: 24086622 [TBL] [Abstract][Full Text] [Related]
16. An Overdose of the Arabidopsis Coreceptor BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1 or Its Ectodomain Causes Autoimmunity in a SUPPRESSOR OF BIR1-1-Dependent Manner. Domínguez-Ferreras A; Kiss-Papp M; Jehle AK; Felix G; Chinchilla D Plant Physiol; 2015 Jul; 168(3):1106-21. PubMed ID: 25944825 [TBL] [Abstract][Full Text] [Related]
17. The tomato calcium sensor Cbl10 and its interacting protein kinase Cipk6 define a signaling pathway in plant immunity. de la Torre F; Gutiérrez-Beltrán E; Pareja-Jaime Y; Chakravarthy S; Martin GB; del Pozo O Plant Cell; 2013 Jul; 25(7):2748-64. PubMed ID: 23903322 [TBL] [Abstract][Full Text] [Related]
18. Tomato Wall-Associated Kinase SlWak1 Depends on Fls2/Fls3 to Promote Apoplastic Immune Responses to Zhang N; Pombo MA; Rosli HG; Martin GB Plant Physiol; 2020 Aug; 183(4):1869-1882. PubMed ID: 32371523 [TBL] [Abstract][Full Text] [Related]
19. NTRC and chloroplast-generated reactive oxygen species regulate Pseudomonas syringae pv. tomato disease development in tomato and Arabidopsis. Ishiga Y; Ishiga T; Wangdi T; Mysore KS; Uppalapati SR Mol Plant Microbe Interact; 2012 Mar; 25(3):294-306. PubMed ID: 22112219 [TBL] [Abstract][Full Text] [Related]
20. Natural variation for unusual host responses and flagellin-mediated immunity against Pseudomonas syringae in genetically diverse tomato accessions. Roberts R; Mainiero S; Powell AF; Liu AE; Shi K; Hind SR; Strickler SR; Collmer A; Martin GB New Phytol; 2019 Jul; 223(1):447-461. PubMed ID: 30861136 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]