These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 24675904)

  • 1. A solar-thermal energy harvesting scheme: enhanced heat capacity of molten HITEC salt mixed with Sn/SiO(x) core-shell nanoparticles.
    Lai CC; Chang WC; Hu WL; Wang ZM; Lu MC; Chueh YL
    Nanoscale; 2014 May; 6(9):4555-9. PubMed ID: 24675904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal properties analysis and thermal cycling of HITEC molten salt with h-BN nanoparticles for CSP thermal energy storage applications.
    Suraparaju SK; Aljaerani HA; Samykano M; Kadirgama K; Noor MM; Natarajan SK
    Environ Sci Pollut Res Int; 2024 Aug; 31(38):50166-50178. PubMed ID: 38625473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Wide-Working-Temperature NaNO
    Wang H; Li J; Zhong Y; Liu X; Wang M
    Molecules; 2024 May; 29(10):. PubMed ID: 38792189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-step synthesis and characterization of core-shell Fe@SiO2 nanocomposite for Cr (VI) reduction.
    Li Y; Jin Z; Li T; Xiu Z
    Sci Total Environ; 2012 Apr; 421-422():260-6. PubMed ID: 22381028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile Synthesis and
    Rajasekar K; Dinesh A; Durka M; Muthukumaravel K
    J Nanosci Nanotechnol; 2019 Jun; 19(6):3536-3543. PubMed ID: 30744782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and Characterization of Molten Salt Nanofluids for Thermal Energy Storage Application in Concentrated Solar Power Plants-Mechanistic Understanding of Specific Heat Capacity Enhancement.
    Ma B; Shin D; Banerjee D
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33207602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ production of titanium dioxide nanoparticles in molten salt phase for thermal energy storage and heat-transfer fluid applications.
    Lasfargues M; Bell A; Ding Y
    J Nanopart Res; 2016; 18():150. PubMed ID: 27358585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of silica/carbon-encapsulated core-shell spheres: templates for other unique core-shell structures and applications in in situ loading of noble-metal nanoparticles.
    Wan Y; Min YL; Yu SH
    Langmuir; 2008 May; 24(9):5024-8. PubMed ID: 18363416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pH on the synthesis and properties of luminescent SiO2/calcium phosphate:Eu3+ core-shell nanoparticles.
    Dembski S; Milde M; Dyrba M; Schweizer S; Gellermann C; Klockenbring T
    Langmuir; 2011 Dec; 27(23):14025-32. PubMed ID: 21988231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications.
    Lasfargues M; Stead G; Amjad M; Ding Y; Wen D
    Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spherical core-shell structured nanophosphors on the basis of europium-doped lutetium compounds.
    Yermolayeva YV; Tolmachev AV; Korshikova TI; Yavetskiy RP; Dobrotvorskaya MV; Danylenko NI; Sofronov DS
    Nanotechnology; 2009 Aug; 20(32):325601. PubMed ID: 19620751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and thermal behavior of tin-based alloy (Sn-Ag-Cu) nanoparticles.
    Roshanghias A; Yakymovych A; Bernardi J; Ipser H
    Nanoscale; 2015 Mar; 7(13):5843-51. PubMed ID: 25757694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and characterization of a quaternary nitrate based molten salt heat transfer fluid for concentrated solar power plant.
    Kwasi-Effah CC; Egware HO; Obanor AI; Ighodaro OO
    Heliyon; 2023 May; 9(5):e16096. PubMed ID: 37215795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining optical lithography with rapid microwave heating for the selective growth of Au/Ag bimetallic core/shell structures on patterned silicon wafers.
    Liu FK; Huang PW; Chang YC; Ko FH; Chu TC
    Langmuir; 2005 Mar; 21(6):2519-25. PubMed ID: 15752048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effect of In Situ Synthesis of MgO Nanoparticles on the Thermal Properties of Ternary Nitrate.
    Tong Z; Li L; Li Y; Wang Q; Cheng X
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled synthesis of monodisperse SiO(2)--TiO(2) microspheres with a yolk-shell structure as effective photocatalysts.
    Yoo JB; Yoo HJ; Lim BW; Lee KH; Kim MH; Kang D; Hur NH
    ChemSusChem; 2012 Dec; 5(12):2334-40. PubMed ID: 23132768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the specific heat capacity of HITEC-salt nanocomposites for concentrated solar power applications.
    Parida DR; Basu S
    RSC Adv; 2023 Feb; 13(8):5496-5508. PubMed ID: 36798611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A facile synthesis of Cu(2)O/SiO(2) and Cu/SiO(2) core-shell octahedral nanocomposites.
    Su X; Zhao J; Zhao X; Guo Y; Zhu Y; Wang Z
    Nanotechnology; 2008 Sep; 19(36):365610. PubMed ID: 21828881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of Cu@SiO₂ Core-Shell Nanoparticles with Antibacterial Properties.
    Bae JH; Cha JM; Ryu BK
    J Nanosci Nanotechnol; 2019 Mar; 19(3):1690-1694. PubMed ID: 30469247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile green in situ synthesis of Mg/CuO core/shell nanoenergetic arrays with a superior heat-release property and long-term storage stability.
    Zhou X; Xu D; Zhang Q; Lu J; Zhang K
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7641-6. PubMed ID: 23869818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.