BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 24676211)

  • 1. Mechanism of μ-conotoxin PIIIA binding to the voltage-gated Na+ channel NaV1.4.
    Chen R; Robinson A; Chung SH
    PLoS One; 2014; 9(3):e93267. PubMed ID: 24676211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the μ-Conotoxin PIIIA Specificity Against Voltage-Gated Sodium Channels from Binding Energy Calculations.
    Chen F; Huang W; Jiang T; Yu R
    Mar Drugs; 2018 May; 16(5):. PubMed ID: 29735899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple, distributed interactions of μ-conotoxin PIIIA associated with broad targeting among voltage-gated sodium channels.
    McArthur JR; Ostroumov V; Al-Sabi A; McMaster D; French RJ
    Biochemistry; 2011 Jan; 50(1):116-24. PubMed ID: 21110521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Study of Binding of μ-Conotoxin GIIIA to Bacterial Sodium Channels NaVAb and NaVRh.
    Patel D; Mahdavi S; Kuyucak S
    Biochemistry; 2016 Mar; 55(12):1929-38. PubMed ID: 26959170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding modes of μ-conotoxin to the bacterial sodium channel (NaVAb).
    Chen R; Chung SH
    Biophys J; 2012 Feb; 102(3):483-8. PubMed ID: 22325270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic study of binding of μ-conotoxins to the sodium channel NaV1.4.
    Mahdavi S; Kuyucak S
    Toxins (Basel); 2014 Dec; 6(12):3454-70. PubMed ID: 25529306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folding similarity of the outer pore region in prokaryotic and eukaryotic sodium channels revealed by docking of conotoxins GIIIA, PIIIA, and KIIIA in a NavAb-based model of Nav1.4.
    Korkosh VS; Zhorov BS; Tikhonov DB
    J Gen Physiol; 2014 Sep; 144(3):231-44. PubMed ID: 25156117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics study of binding of µ-conotoxin GIIIA to the voltage-gated sodium channel Na(v)1.4.
    Mahdavi S; Kuyucak S
    PLoS One; 2014; 9(8):e105300. PubMed ID: 25133704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extremely Potent Block of Bacterial Voltage-Gated Sodium Channels by µ-Conotoxin PIIIA.
    Finol-Urdaneta RK; McArthur JR; Korkosh VS; Huang S; McMaster D; Glavica R; Tikhonov DB; Zhorov BS; French RJ
    Mar Drugs; 2019 Aug; 17(9):. PubMed ID: 31470595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and structure-activity of mu-conotoxin TIIIA, a potent inhibitor of tetrodotoxin-sensitive voltage-gated sodium channels.
    Lewis RJ; Schroeder CI; Ekberg J; Nielsen KJ; Loughnan M; Thomas L; Adams DA; Drinkwater R; Adams DJ; Alewood PF
    Mol Pharmacol; 2007 Mar; 71(3):676-85. PubMed ID: 17142296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional insights into the inhibition of human voltage-gated sodium channels by μ-conotoxin KIIIA disulfide isomers.
    Tran HNT; McMahon KL; Deuis JR; Vetter I; Schroeder CI
    J Biol Chem; 2022 Mar; 298(3):101728. PubMed ID: 35167877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of Ion Permeation in Mammalian Voltage-Gated Sodium Channels.
    Mahdavi S; Kuyucak S
    PLoS One; 2015; 10(8):e0133000. PubMed ID: 26274802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Conformational Diversity on the Bioactivity of µ-Conotoxin PIIIA Disulfide Isomers.
    Paul George AA; Heimer P; Leipold E; Schmitz T; Kaufmann D; Tietze D; Heinemann SH; Imhof D
    Mar Drugs; 2019 Jul; 17(7):. PubMed ID: 31269696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two for the Price of One: Heterobivalent Ligand Design Targeting Two Binding Sites on Voltage-Gated Sodium Channels Slows Ligand Dissociation and Enhances Potency.
    Peschel A; Cardoso FC; Walker AA; Durek T; Stone MRL; Braga Emidio N; Dawson PE; Muttenthaler M; King GF
    J Med Chem; 2020 Nov; 63(21):12773-12785. PubMed ID: 33078946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational Design of High-Affinity Blockers for Sodium Channel Na
    Meng G; Kuyucak S
    Mar Drugs; 2022 Feb; 20(2):. PubMed ID: 35200683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subtype-specific block of voltage-gated K
    Leipold E; Ullrich F; Thiele M; Tietze AA; Terlau H; Imhof D; Heinemann SH
    Biochem Biophys Res Commun; 2017 Jan; 482(4):1135-1140. PubMed ID: 27916464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of tetrodotoxin block and resistance in sodium channels.
    Chen R; Chung SH
    Biochem Biophys Res Commun; 2014 Mar; 446(1):370-4. PubMed ID: 24607901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. mu-Conotoxin PIIIA, a new peptide for discriminating among tetrodotoxin-sensitive Na channel subtypes.
    Shon KJ; Olivera BM; Watkins M; Jacobsen RB; Gray WR; Floresca CZ; Cruz LJ; Hillyard DR; Brink A; Terlau H; Yoshikami D
    J Neurosci; 1998 Jun; 18(12):4473-81. PubMed ID: 9614224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for tetrodotoxin-resistant sodium channel binding by mu-conotoxin SmIIIA.
    Keizer DW; West PJ; Lee EF; Yoshikami D; Olivera BM; Bulaj G; Norton RS
    J Biol Chem; 2003 Nov; 278(47):46805-13. PubMed ID: 12970353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacological fractionation of tetrodotoxin-sensitive sodium currents in rat dorsal root ganglion neurons by μ-conotoxins.
    Zhang MM; Wilson MJ; Gajewiak J; Rivier JE; Bulaj G; Olivera BM; Yoshikami D
    Br J Pharmacol; 2013 May; 169(1):102-14. PubMed ID: 23351163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.