These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 2467695)
1. Stochastic theory of singly occupied ion channels. II. Effects of access resistance and potential gradients extending into the bath. Chiu SW; Jakobsson E Biophys J; 1989 Jan; 55(1):147-57. PubMed ID: 2467695 [TBL] [Abstract][Full Text] [Related]
2. Stochastic theory of ion movement in channels with single-ion occupancy. Application to sodium permeation of gramicidin channels. Jakobsson E; Chiu SW Biophys J; 1987 Jul; 52(1):33-45. PubMed ID: 2440492 [TBL] [Abstract][Full Text] [Related]
3. Asymmetric gramicidin channels: heterodimeric channels with a single F6Val1 residue. Oiki S; Koeppe RE; Andersen OS Biophys J; 1994 Jun; 66(6):1823-32. PubMed ID: 7521224 [TBL] [Abstract][Full Text] [Related]
4. Exact continuum solution for a channel that can be occupied by two ions. Levitt DG Biophys J; 1987 Sep; 52(3):455-66. PubMed ID: 2443193 [TBL] [Abstract][Full Text] [Related]
5. Electrodiffusion of ions approaching the mouth of a conducting membrane channel. Peskoff A; Bers DM Biophys J; 1988 Jun; 53(6):863-75. PubMed ID: 2456103 [TBL] [Abstract][Full Text] [Related]
6. Effect of pore structure on energy barriers and applied voltage profiles. I. Symmetrical channels. Jordan PC Biophys J; 1984 Jun; 45(6):1091-100. PubMed ID: 6331539 [TBL] [Abstract][Full Text] [Related]
7. How electrolyte shielding influences the electrical potential in transmembrane ion channels. Jordan PC; Bacquet RJ; McCammon JA; Tran P Biophys J; 1989 Jun; 55(6):1041-52. PubMed ID: 2475181 [TBL] [Abstract][Full Text] [Related]
8. Theoretical study of the antiparallel double-stranded helical dimer of gramicidin as an ion channel. Sung SS; Jordan PC Biophys J; 1988 Sep; 54(3):519-26. PubMed ID: 2462929 [TBL] [Abstract][Full Text] [Related]
9. Open channel noise. V. Fluctuating barriers to ion entry in gramicidin A channels. Heinemann SH; Sigworth FJ Biophys J; 1990 Mar; 57(3):499-514. PubMed ID: 1689592 [TBL] [Abstract][Full Text] [Related]
10. How shortening a channel may lower its conductance. The case of des-Val7-DVal8-gramicidin A. Jordan PC; Vayl IS Biochim Biophys Acta; 1985 Sep; 818(3):416-20. PubMed ID: 2412583 [TBL] [Abstract][Full Text] [Related]
11. Ion permeation through the gramicidin channel: atomically detailed modeling by the Stochastic Difference Equation. Siva K; Elber R Proteins; 2003 Jan; 50(1):63-80. PubMed ID: 12471600 [TBL] [Abstract][Full Text] [Related]
12. Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel. Chen D; Lear J; Eisenberg B Biophys J; 1997 Jan; 72(1):97-116. PubMed ID: 8994596 [TBL] [Abstract][Full Text] [Related]
13. General continuum theory for multiion channel. II. Application to acetylcholine channel. Levitt DG Biophys J; 1991 Feb; 59(2):278-88. PubMed ID: 1706950 [TBL] [Abstract][Full Text] [Related]
14. General continuum theory for multiion channel. I. Theory. Levitt DG Biophys J; 1991 Feb; 59(2):271-7. PubMed ID: 1706949 [TBL] [Abstract][Full Text] [Related]
15. Energetics of ion permeation through membrane channels. Solvation of Na+ by gramicidin A. Aqvist J; Warshel A Biophys J; 1989 Jul; 56(1):171-82. PubMed ID: 2473789 [TBL] [Abstract][Full Text] [Related]
16. Ion currents through pores. The roles of diffusion and external access steps in determining the currents through narrow pores. Hladky SB Biophys J; 1984 Sep; 46(3):293-7. PubMed ID: 6207866 [TBL] [Abstract][Full Text] [Related]
19. Hydrodynamic model of temperature change in open ionic channels. Chen DP; Eisenberg RS; Jerome JW; Shu CW Biophys J; 1995 Dec; 69(6):2304-22. PubMed ID: 8599638 [TBL] [Abstract][Full Text] [Related]
20. The nature of ion and water barrier crossings in a simulated ion channel. Chiu SW; Novotny JA; Jakobsson E Biophys J; 1993 Jan; 64(1):98-109. PubMed ID: 7679301 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]