BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 24677030)

  • 1. Daily rhythms in the cyanobacterium synechococcus elongatus probed by high-resolution mass spectrometry-based proteomics reveals a small defined set of cyclic proteins.
    Guerreiro AC; Benevento M; Lehmann R; van Breukelen B; Post H; Giansanti P; Maarten Altelaar AF; Axmann IM; Heck AJ
    Mol Cell Proteomics; 2014 Aug; 13(8):2042-55. PubMed ID: 24677030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring light/dark association dynamics of multi-protein complexes in cyanobacteria using size exclusion chromatography-based proteomics.
    Guerreiro AC; Penning R; Raaijmakers LM; Axman IM; Heck AJ; Altelaar AF
    J Proteomics; 2016 Jun; 142():33-44. PubMed ID: 27142972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel allele of kaiA shortens the circadian period and strengthens interaction of oscillator components in the cyanobacterium Synechococcus elongatus PCC 7942.
    Chen Y; Kim YI; Mackey SR; Holtman CK; Liwang A; Golden SS
    J Bacteriol; 2009 Jul; 191(13):4392-400. PubMed ID: 19395479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minimal tool set for a prokaryotic circadian clock.
    Schmelling NM; Lehmann R; Chaudhury P; Beck C; Albers SV; Axmann IM; Wiegard A
    BMC Evol Biol; 2017 Jul; 17(1):169. PubMed ID: 28732467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability and lability of circadian period of gene expression in the cyanobacterium Synechococcus elongatus.
    Clerico EM; Cassone VM; Golden SS
    Microbiology (Reading); 2009 Feb; 155(Pt 2):635-641. PubMed ID: 19202112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A circadian timing mechanism in the cyanobacteria.
    Williams SB
    Adv Microb Physiol; 2007; 52():229-96. PubMed ID: 17027373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cyanobacterial circadian clock based on the Kai oscillator.
    Kondo T
    Cold Spring Harb Symp Quant Biol; 2007; 72():47-55. PubMed ID: 18419262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of KaiC phosphorylation in the circadian clock system of Synechococcus elongatus PCC 7942.
    Nishiwaki T; Satomi Y; Nakajima M; Lee C; Kiyohara R; Kageyama H; Kitayama Y; Temamoto M; Yamaguchi A; Hijikata A; Go M; Iwasaki H; Takao T; Kondo T
    Proc Natl Acad Sci U S A; 2004 Sep; 101(38):13927-32. PubMed ID: 15347812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. KaiC from a cyanobacterium Gloeocapsa sp. PCC 7428 retains functional and structural properties required as the core of circadian clock system.
    Mukaiyama A; Ouyang D; Furuike Y; Akiyama S
    Int J Biol Macromol; 2019 Jun; 131():67-73. PubMed ID: 30857964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How a cyanobacterium tells time.
    Dong G; Golden SS
    Curr Opin Microbiol; 2008 Dec; 11(6):541-6. PubMed ID: 18983934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mathematical model for the Kai-protein-based chemical oscillator and clock gene expression rhythms in cyanobacteria.
    Miyoshi F; Nakayama Y; Kaizu K; Iwasaki H; Tomita M
    J Biol Rhythms; 2007 Feb; 22(1):69-80. PubMed ID: 17229926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring Protein-Protein Interactions in the Cyanobacterial Circadian Clock in Real Time via Electron Paramagnetic Resonance Spectroscopy.
    Chow GK; Chavan AG; Heisler JC; Chang YG; LiWang A; Britt RD
    Biochemistry; 2020 Jul; 59(26):2387-2400. PubMed ID: 32453554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elevated ATPase activity of KaiC applies a circadian checkpoint on cell division in Synechococcus elongatus.
    Dong G; Yang Q; Wang Q; Kim YI; Wood TL; Osteryoung KW; van Oudenaarden A; Golden SS
    Cell; 2010 Feb; 140(4):529-39. PubMed ID: 20178745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of KaiA-KaiC protein interactions in the cyano-bacterial circadian clock using hybrid structural methods.
    Pattanayek R; Williams DR; Pattanayek S; Xu Y; Mori T; Johnson CH; Stewart PL; Egli M
    EMBO J; 2006 May; 25(9):2017-28. PubMed ID: 16628225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the Roles for Essential Genes in the Regulation of the Circadian Clock in
    Boodaghian N; Park H; Cohen SE
    J Biol Rhythms; 2024 Jun; 39(3):308-317. PubMed ID: 38357890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Kai-Protein Clock-Keeping Track of Cyanobacteria's Daily Life.
    Snijder J; Axmann IM
    Subcell Biochem; 2019; 93():359-391. PubMed ID: 31939158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability of the Synechococcus elongatus PCC 7942 circadian clock under directed anti-phase expression of the kai genes.
    Ditty JL; Canales SR; Anderson BE; Williams SB; Golden SS
    Microbiology (Reading); 2005 Aug; 151(Pt 8):2605-2613. PubMed ID: 16079339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical analysis of three putative KaiC clock proteins from Synechocystis sp. PCC 6803 suggests their functional divergence.
    Wiegard A; Dörrich AK; Deinzer HT; Beck C; Wilde A; Holtzendorff J; Axmann IM
    Microbiology (Reading); 2013 May; 159(Pt 5):948-958. PubMed ID: 23449916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. KaiB functions as an attenuator of KaiC phosphorylation in the cyanobacterial circadian clock system.
    Kitayama Y; Iwasaki H; Nishiwaki T; Kondo T
    EMBO J; 2003 May; 22(9):2127-34. PubMed ID: 12727879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting KaiC phosphorylation rhythms of the cyanobacterial circadian oscillator in vitro and in vivo.
    Kim YI; Boyd JS; Espinosa J; Golden SS
    Methods Enzymol; 2015; 551():153-73. PubMed ID: 25662456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.