These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
436 related articles for article (PubMed ID: 24677109)
1. Corneal biomechanical properties at different corneal cross-linking (CXL) irradiances. Hammer A; Richoz O; Arba Mosquera S; Tabibian D; Hoogewoud F; Hafezi F Invest Ophthalmol Vis Sci; 2014 May; 55(5):2881-4. PubMed ID: 24677109 [TBL] [Abstract][Full Text] [Related]
2. Equivalence of biomechanical changes induced by rapid and standard corneal cross-linking, using riboflavin and ultraviolet radiation. Schumacher S; Oeftiger L; Mrochen M Invest Ophthalmol Vis Sci; 2011 Nov; 52(12):9048-52. PubMed ID: 22025568 [TBL] [Abstract][Full Text] [Related]
3. First proposed efficacy study of high versus standard irradiance and fractionated riboflavin/ultraviolet a cross-linking with equivalent energy exposure. Krueger RR; Herekar S; Spoerl E Eye Contact Lens; 2014 Nov; 40(6):353-7. PubMed ID: 25365552 [TBL] [Abstract][Full Text] [Related]
4. Changes in Corneal Biomechanical Properties With Different Corneal Cross-linking Irradiances. Bao F; Zheng Y; Liu C; Zheng X; Zhao Y; Wang Y; Li L; Wang Q; Chen S; Elsheikh A J Refract Surg; 2018 Jan; 34(1):51-58. PubMed ID: 29315442 [TBL] [Abstract][Full Text] [Related]
5. The efficacy of corneal cross-linking shows a sudden decrease with very high intensity UV light and short treatment time. Wernli J; Schumacher S; Spoerl E; Mrochen M Invest Ophthalmol Vis Sci; 2013 Feb; 54(2):1176-80. PubMed ID: 23299484 [TBL] [Abstract][Full Text] [Related]
6. An Algorithm to Predict the Biomechanical Stiffening Effect in Corneal Cross-linking. Kling S; Hafezi F J Refract Surg; 2017 Feb; 33(2):128-136. PubMed ID: 28192592 [TBL] [Abstract][Full Text] [Related]
7. Oxygen Diffusion May Limit the Biomechanical Effectiveness of Iontophoresis-Assisted Transepithelial Corneal Cross-linking. Torres-Netto EA; Kling S; Hafezi N; Vinciguerra P; Randleman JB; Hafezi F J Refract Surg; 2018 Nov; 34(11):768-774. PubMed ID: 30428097 [TBL] [Abstract][Full Text] [Related]
8. Biomechanical efficacy of collagen crosslinking in porcine cornea using a femtosecond laser pocket. Wollensak G; Hammer CM; Spörl E; Klenke J; Skerl K; Zhang Y; Sel S Cornea; 2014 Mar; 33(3):300-5. PubMed ID: 24457453 [TBL] [Abstract][Full Text] [Related]
9. Cross-Linking Biomechanical Effect in Human Corneas by Same Energy, Different UV-A Fluence: An Enzymatic Digestion Comparative Evaluation. Kanellopoulos AJ; Loukas YL; Asimellis G Cornea; 2016 Apr; 35(4):557-61. PubMed ID: 26845317 [TBL] [Abstract][Full Text] [Related]
10. In vivo thermographic analysis of the corneal surface in keratoconic patients undergoing riboflavin-UV-A accelerated cross-linking. Mencucci R; Mazzotta C; Corvi A; Terracciano L; Rechichi M; Matteoli S Cornea; 2015 Mar; 34(3):323-7. PubMed ID: 25474235 [TBL] [Abstract][Full Text] [Related]
11. Increased Biomechanical Efficacy of Corneal Cross-linking in Thin Corneas Due to Higher Oxygen Availability. Kling S; Richoz O; Hammer A; Tabibian D; Jacob S; Agarwal A; Hafezi F J Refract Surg; 2015 Dec; 31(12):840-6. PubMed ID: 26653730 [TBL] [Abstract][Full Text] [Related]
12. Monitoring of cornea elastic properties changes during UV-A/riboflavin-induced corneal collagen cross-linking using supersonic shear wave imaging: a pilot study. Nguyen TM; Aubry JF; Touboul D; Fink M; Gennisson JL; Bercoff J; Tanter M Invest Ophthalmol Vis Sci; 2012 Aug; 53(9):5948-54. PubMed ID: 22871840 [TBL] [Abstract][Full Text] [Related]
13. Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments. Kling S; Remon L; Pérez-Escudero A; Merayo-Lloves J; Marcos S Invest Ophthalmol Vis Sci; 2010 Aug; 51(8):3961-8. PubMed ID: 20335615 [TBL] [Abstract][Full Text] [Related]
14. Biomechanical efficacy of contact lens-assisted collagen cross-linking in porcine eyes. Wollensak G; Spörl E; Herbst H Acta Ophthalmol; 2019 Feb; 97(1):e84-e90. PubMed ID: 30421526 [TBL] [Abstract][Full Text] [Related]
15. Comparison of waveform-derived corneal stiffness and stress-strain extensometry-derived corneal stiffness using different cross-linking irradiances: an experimental study with air-puff applanation of ex vivo porcine eyes. Herber R; Francis M; Spoerl E; Pillunat LE; Raiskup F; Sinha Roy A Graefes Arch Clin Exp Ophthalmol; 2020 Oct; 258(10):2173-2184. PubMed ID: 32556637 [TBL] [Abstract][Full Text] [Related]
17. Establishing Corneal Cross-Linking With Riboflavin and UV-A in the Mouse Cornea In Vivo: Biomechanical Analysis. Hammer A; Kling S; Boldi MO; Richoz O; Tabibian D; Randleman JB; Hafezi F Invest Ophthalmol Vis Sci; 2015 Oct; 56(11):6581-90. PubMed ID: 26465887 [TBL] [Abstract][Full Text] [Related]
18. Corneal crosslinking with riboflavin and ultraviolet A. I. Principles. Raiskup F; Spoerl E Ocul Surf; 2013 Apr; 11(2):65-74. PubMed ID: 23583042 [TBL] [Abstract][Full Text] [Related]
19. Regional Biomechanical properties of human sclera after cross-linking by riboflavin/ultraviolet A. Wang M; Zhang F; Qian X; Zhao X J Refract Surg; 2012 Oct; 28(10):723-8. PubMed ID: 23062003 [TBL] [Abstract][Full Text] [Related]