These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
436 related articles for article (PubMed ID: 24677109)
21. Repeated application of riboflavin during corneal cross-linking does not improve the biomechanical stiffening effect ex vivo. Abdshahzadeh H; Abrishamchi R; Aydemir ME; Hafezi N; Hillen M; Torres-Netto EA; Lu NJ; Hafezi F Exp Eye Res; 2022 Nov; 224():109267. PubMed ID: 36167218 [TBL] [Abstract][Full Text] [Related]
22. Biomechanical stiffening: Slow low-irradiance corneal crosslinking versus the standard Dresden protocol. Kling S; Hafezi F J Cataract Refract Surg; 2017 Jul; 43(7):975-979. PubMed ID: 28823446 [TBL] [Abstract][Full Text] [Related]
23. Effects of Thickness on Corneal Biomechanical Properties Using Optical Coherence Elastography. Vantipalli S; Li J; Singh M; Aglyamov SR; Larin KV; Twa MD Optom Vis Sci; 2018 Apr; 95(4):299-308. PubMed ID: 29561496 [TBL] [Abstract][Full Text] [Related]
24. Corneal biomechanical properties from two-dimensional corneal flap extensiometry: application to UV-riboflavin cross-linking. Kling S; Ginis H; Marcos S Invest Ophthalmol Vis Sci; 2012 Jul; 53(8):5010-5. PubMed ID: 22736617 [TBL] [Abstract][Full Text] [Related]
25. Biomechanical property analysis after corneal collagen cross-linking in relation to ultraviolet A irradiation time. Lanchares E; del Buey MA; Cristóbal JA; Lavilla L; Calvo B Graefes Arch Clin Exp Ophthalmol; 2011 Aug; 249(8):1223-7. PubMed ID: 21494876 [TBL] [Abstract][Full Text] [Related]
26. Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking. Wollensak G; Spoerl E; Seiler T J Cataract Refract Surg; 2003 Sep; 29(9):1780-5. PubMed ID: 14522301 [TBL] [Abstract][Full Text] [Related]
27. Corneal collagen cross-linking combined with simulation of femtosecond laser-assisted refractive lens extraction: an ex vivo biomechanical effect evaluation. Kanellopoulos AJ; Kontos MA; Chen S; Asimellis G Cornea; 2015 May; 34(5):550-6. PubMed ID: 25651497 [TBL] [Abstract][Full Text] [Related]
28. Intrastromal application of riboflavin for corneal crosslinking. Seiler TG; Fischinger I; Senfft T; Schmidinger G; Seiler T Invest Ophthalmol Vis Sci; 2014 Jun; 55(7):4261-5. PubMed ID: 24917136 [TBL] [Abstract][Full Text] [Related]
29. Enzymatic Resistance of Corneas Crosslinked Using Riboflavin in Conjunction With Low Energy, High Energy, and Pulsed UVA Irradiation Modes. Aldahlawi NH; Hayes S; O'Brart DP; Akhbanbetova A; Littlechild SL; Meek KM Invest Ophthalmol Vis Sci; 2016 Apr; 57(4):1547-52. PubMed ID: 27046119 [TBL] [Abstract][Full Text] [Related]
30. Corneal resistance to shear force after UVA-riboflavin cross-linking. Søndergaard AP; Ivarsen A; Hjortdal J Invest Ophthalmol Vis Sci; 2013 Jul; 54(7):5059-69. PubMed ID: 23778880 [TBL] [Abstract][Full Text] [Related]
31. The effect of standard and high-fluence corneal cross-linking (CXL) on cornea and limbus. Richoz O; Tabibian D; Hammer A; Majo F; Nicolas M; Hafezi F Invest Ophthalmol Vis Sci; 2014 Jul; 55(9):5783-7. PubMed ID: 25052995 [TBL] [Abstract][Full Text] [Related]
32. Protein Oxidation Levels After Different Corneal Collagen Cross-Linking Methods. Turkcu UO; Yuksel N; Novruzlu S; Yalinbas D; Bilgihan A; Bilgihan K Cornea; 2016 Mar; 35(3):388-91. PubMed ID: 26751992 [TBL] [Abstract][Full Text] [Related]
34. Corneal Cross-Linking: Evaluating the Potential for a Lower Power, Shorter Duration Treatment. Caruso C; Barbaro G; Epstein RL; Tronino D; Ostacolo C; Sacchi A; Pacente L; Del Prete A; Sala M; Troisi S Cornea; 2016 May; 35(5):659-62. PubMed ID: 26989958 [TBL] [Abstract][Full Text] [Related]
35. Supersonic shear wave elastography for the in vivo evaluation of transepithelial corneal collagen cross-linking. Touboul D; Gennisson JL; Nguyen TM; Robinet A; Roberts CJ; Tanter M; Grenier N Invest Ophthalmol Vis Sci; 2014 Mar; 55(3):1976-84. PubMed ID: 24519426 [TBL] [Abstract][Full Text] [Related]
36. In vitro quantification of the stiffening effect of corneal cross-linking in the human cornea using radial shearing speckle pattern interferometry. Knox Cartwright NE; Tyrer JR; Marshall J J Refract Surg; 2012 Jul; 28(7):503-8. PubMed ID: 22833877 [TBL] [Abstract][Full Text] [Related]
37. Corneal biomechanical properties following corneal cross-linking: Does age have an effect? Alenezi B; Kazaili A; Akhtar R; Radhakrishnan H Exp Eye Res; 2022 Jan; 214():108839. PubMed ID: 34785203 [TBL] [Abstract][Full Text] [Related]
38. Biomechanical efficacy of corneal cross-linking using hypoosmolar riboflavin solution. Wollensak G; Spörl E Eur J Ophthalmol; 2019 Sep; 29(5):474-481. PubMed ID: 30255714 [TBL] [Abstract][Full Text] [Related]
39. Photochemical activation increases the porcine corneal stiffness and resistance to collagenase digestion. Wang T; Peng Y; Shen N; Yu Y; Yao M; Zhu J Exp Eye Res; 2014 Jun; 123():97-104. PubMed ID: 24768762 [TBL] [Abstract][Full Text] [Related]
40. Biomechanical Response After Corneal Cross-linking With Riboflavin Dissolved in Dextran Solution Versus Hydroxypropyl Methylcellulose. Fischinger I; Seiler TG; Wendelstein J; Tetz K; Fuchs B; Bolz M J Refract Surg; 2021 Sep; 37(9):631-635. PubMed ID: 34506235 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]