These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 2467719)

  • 1. The role of cAMP in regulation of electrical activity of the neuroendocrine caudodorsal cells of Lymnaea stagnalis.
    Moed PJ; Pieneman AW; Bos NP; ter Maat A
    Brain Res; 1989 Jan; 476(2):298-306. PubMed ID: 2467719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. cAMP and excitability in neuroendocrine cells during reproductive senescence.
    Janse C; van der Roest M
    Neurobiol Aging; 2001; 22(3):503-14. PubMed ID: 11378258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of cAMP in electrical and secretory activity of the neuroendocrine caudo-dorsal cells of Lymnaea stagnalis.
    Buma P; Roubos EW; Brunekreef K
    Brain Res; 1986 Aug; 380(1):26-33. PubMed ID: 2428422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Survival of egg-laying controlling neuroendocrine cells during reproductive senescence of a mollusc.
    Janse C
    Acta Biol Hung; 2004; 55(1-4):251-9. PubMed ID: 15270241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemically mediated positive feedback generates long-lasting afterdischarge in a molluscan neuroendocrine system.
    ter Maat A; Geraerts WP; Jansen RF; Bos NP
    Brain Res; 1988 Jan; 438(1-2):77-82. PubMed ID: 3345451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in molluscan neurosecretory cells during reproductive cessation: cause or effect?
    Janse C
    Acta Biol Hung; 2000; 51(2-4):255-64. PubMed ID: 11034150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High intracellular calcium levels during and after electrical discharges in molluscan peptidergic neurons.
    Kits KS; Dreijer AM; Lodder JC; Borgdorff A; Wadman WJ
    Neuroscience; 1997 Jul; 79(1):275-84. PubMed ID: 9244856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneity of peptides released by electrically active neuroendocrine caudodorsal cells of Lymnaea stagnalis.
    Geraerts WP; Hogenes TM
    Brain Res; 1985 Apr; 331(1):51-61. PubMed ID: 4039216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of neuropeptides encoded on CDCH-1 gene in the organization of egg-laying behavior in the pond snail, Lymnaea stagnalis.
    Hermann PM; de Lange RP; Pieneman AW; ter Maat A; Jansen RF
    J Neurophysiol; 1997 Dec; 78(6):2859-69. PubMed ID: 9405506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. cAMP and forskolin inhibit potassium currents in rat taste receptor cells by different mechanisms.
    Herness MS; Sun XD; Chen Y
    Am J Physiol; 1997 Jun; 272(6 Pt 1):C2005-18. PubMed ID: 9227430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Second messengers of octopamine receptors in the snail Lymnaea.
    Pitt S; Vehovszky A; Szabó H; Elliott CJ
    Acta Biol Hung; 2004; 55(1-4):177-83. PubMed ID: 15270233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoperiodic control of electrophysiological properties of the caudo-dorsal cells in the pond snail, Lymnaea stagnalis.
    Hamanaka Y; Shiga S
    J Comp Neurol; 2021 Oct; 529(14):3360-3374. PubMed ID: 34057198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High intracellular calcium levels during and after electrical discharges in molluscan peptidergic neurons.
    Kits KS; Dreijer AM; Lodder JC; Borgdorff A; Wadman WJ
    Neuroscience; 1997 Jul; 79(1):75-84. PubMed ID: 9178883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane mechanism of neuroendocrine caudo-dorsal cell inhibition by the ring neuron in the pond snail Lymnaea stagnalis.
    Jansen RF; ter Maat A; Bos NP
    J Neurobiol; 1985 Jan; 16(1):15-26. PubMed ID: 2580946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Somatostatin inhibits corticotropin-releasing factor-stimulated adrenocorticotropin release, adenylate cyclase, and activation of adenosine 3',5'-monophosphate-dependent protein kinase isoenzymes in AtT20 cells.
    Litvin Y; Leiser M; Fleischer N; Erlichman J
    Endocrinology; 1986 Aug; 119(2):737-45. PubMed ID: 2426087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of an adenosine 3',5'-monophosphate (cAMP)-responsive region in the rat growth hormone gene: evidence for independent and synergistic effects of cAMP and thyroid hormone on gene expression.
    Copp RP; Samuels HH
    Mol Endocrinol; 1989 May; 3(5):790-6. PubMed ID: 2474128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of adipokinetic hormone release from locust neuroendocrine tissue: participation of calcium and cyclic AMP.
    Pannabecker T; Orchard I
    Brain Res; 1987 Oct; 423(1-2):13-22. PubMed ID: 2445445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of cAMP on ciliary function in rabbit tracheal epithelial cells.
    Tamaoki J; Kondo M; Takizawa T
    J Appl Physiol (1985); 1989 Mar; 66(3):1035-9. PubMed ID: 2468639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adenylate cyclase activity in axon terminals of ovulation-hormone producing neuroendocrine cells of Lymnaea stagnalis (L.).
    Roubos EW; de Keijzer AN; Buma P
    Cell Tissue Res; 1981; 220(3):665-8. PubMed ID: 7296647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurotransmitter modulation, phosphodiesterase inhibitor effects, and cyclic AMP correlates of afterdischarge in peptidergic neurites.
    Kaczmarek LK; Jennings K; Strumwasser F
    Proc Natl Acad Sci U S A; 1978 Oct; 75(10):5200-4. PubMed ID: 217016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.