BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24677241)

  • 21. Characterization of the Continuous Elastic Parameters of Porcine Vocal Folds.
    Burks G; De Vita R; Leonessa A
    J Voice; 2020 Jan; 34(1):1-8. PubMed ID: 30446272
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of the mechanical properties for cranial bones of 8-week-old piglets: the effect of strain rate and region.
    Li Z; Wang G; Ji C; Jiang J; Wang J; Wang J
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1697-1707. PubMed ID: 31119413
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional mechanical attributes of natural and synthetic gel-based scaffolds in tissue engineering: strain-stiffening effects on apparent elastic modulus and compressive toughness.
    Schiavi A; Cuccaro R; Troia A
    J Mech Behav Biomed Mater; 2022 Feb; 126():105066. PubMed ID: 35008012
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of smoking on the mechanical properties of the human lung.
    Karimi A; Razaghi R
    Technol Health Care; 2018; 26(6):963-972. PubMed ID: 30103357
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Systematic review and meta-analysis of the biomechanical properties of the human dura mater applicable in computational human head models.
    Pearcy Q; Tomlinson J; Niestrawska JA; Möbius D; Zhang M; Zwirner J
    Biomech Model Mechanobiol; 2022 Jun; 21(3):755-770. PubMed ID: 35266061
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Validation of a pressure diameter method for determining modulus and strain of collagen engagement for long branches of bovine pulmonary arteries.
    Reusser M; Hunter KS; Lammers SR; Stenmark KR
    J Biomech Eng; 2012 May; 134(5):054501. PubMed ID: 22757496
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measurement of the mechanical properties of the human gallbladder.
    Karimi A; Shojaei A; Tehrani P
    J Med Eng Technol; 2017 Oct; 41(7):541-545. PubMed ID: 28849953
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of strain rate on the mechanical properties of tricalcium phosphate/poly(L: -lactide) composites.
    Yamadi S; Kobayashi S
    J Mater Sci Mater Med; 2009 Jan; 20(1):67-74. PubMed ID: 18704650
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human dilated ascending aorta: Mechanical characterization via uniaxial tensile tests.
    Ferrara A; Morganti S; Totaro P; Mazzola A; Auricchio F
    J Mech Behav Biomed Mater; 2016 Jan; 53():257-271. PubMed ID: 26356765
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quasi-linear viscoelastic modeling of arterial wall for surgical simulation.
    Yang T; Chui CK; Yu RQ; Qin J; Chang SK
    Int J Comput Assist Radiol Surg; 2011 Nov; 6(6):829-38. PubMed ID: 21487834
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A fiber-progressive-engagement model to evaluate the composition, microstructure, and nonlinear pseudoelastic behavior of porcine arteries and decellularized derivatives.
    Lin CH; Kao YC; Lin YH; Ma H; Tsay RY
    Acta Biomater; 2016 Dec; 46():101-111. PubMed ID: 27667016
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of biomolecules on annulus fibrosus micromechanics: effect of enzymatic digestion on elastic and failure properties.
    Isaacs JL; Vresilovic E; Sarkar S; Marcolongo M
    J Mech Behav Biomed Mater; 2014 Dec; 40():75-84. PubMed ID: 25212387
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anisotropic and strain rate-dependent mechanical properties and constitutive modeling of the cancellous bone from piglet cervical vertebrae.
    Li Z; Wang J; Song G; Ji C; Han X
    Comput Methods Programs Biomed; 2020 May; 188():105279. PubMed ID: 31865093
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical properties of the human scalp in tension.
    Falland-Cheung L; Scholze M; Lozano PF; Ondruschka B; Tong DC; Brunton PA; Waddell JN; Hammer N
    J Mech Behav Biomed Mater; 2018 Aug; 84():188-197. PubMed ID: 29793156
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of loading-direction and strain-rate on the mechanical behaviors of human frontal skull bone.
    Zhai X; Nauman EA; Moryl D; Lycke R; Chen WW
    J Mech Behav Biomed Mater; 2020 Mar; 103():103597. PubMed ID: 32090926
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiscale stress-strain characterization of onion outer epidermal tissue in wet and dry states.
    Kim K; Yi H; Zamil MS; Haque MA; Puri VM
    Am J Bot; 2015 Jan; 102(1):12-20. PubMed ID: 25587144
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The differences in measured prostate material properties between probing and unconfined compression testing methods.
    Johnson B; Campbell S; Campbell-Kyureghyan N
    Med Eng Phys; 2020 Jun; 80():44-51. PubMed ID: 32381284
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical characterization of brain tissue in tension at dynamic strain rates.
    Rashid B; Destrade M; Gilchrist MD
    J Mech Behav Biomed Mater; 2014 May; 33():43-54. PubMed ID: 23127641
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Material characterization of the pig kidney in relation with the biomechanical analysis of renal trauma.
    Farshad M; Barbezat M; Flüeler P; Schmidlin F; Graber P; Niederer P
    J Biomech; 1999 Apr; 32(4):417-25. PubMed ID: 10213032
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cyclic Uniaxial Tensile Strain Enhances the Mechanical Properties of Engineered, Scaffold-Free Tendon Fibers.
    Mubyana K; Corr DT
    Tissue Eng Part A; 2018 Dec; 24(23-24):1808-1817. PubMed ID: 29916333
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.