These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 24677332)

  • 1. Tunable plasmon resonances in two-dimensional molybdenum oxide nanoflakes.
    Alsaif MM; Latham K; Field MR; Yao DD; Medhekar NV; Beane GA; Kaner RB; Russo SP; Ou JZ; Kalantar-zadeh K
    Adv Mater; 2014 Jun; 26(23):3931-7. PubMed ID: 24677332
    [No Abstract]   [Full Text] [Related]  

  • 2. Exfoliation Solvent Dependent Plasmon Resonances in Two-Dimensional Sub-Stoichiometric Molybdenum Oxide Nanoflakes.
    Alsaif MM; Field MR; Daeneke T; Chrimes AF; Zhang W; Carey BJ; Berean KJ; Walia S; van Embden J; Zhang B; Latham K; Kalantar-Zadeh K; Ou JZ
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3482-93. PubMed ID: 26795577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Room-temperature Synthesis of Amorphous Molybdenum Oxide Nanodots with Tunable Localized Surface Plasmon Resonances.
    Zhu C; Xu Q; Ji L; Ren Y; Fang M
    Chem Asian J; 2017 Dec; 12(23):2980-2984. PubMed ID: 28885770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CO
    Liu W; Xu Q; Cui W; Zhu C; Qi Y
    Angew Chem Int Ed Engl; 2017 Feb; 56(6):1600-1604. PubMed ID: 28044400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon resonances of highly doped two-dimensional MoS₂.
    Wang Y; Ou JZ; Chrimes AF; Carey BJ; Daeneke T; Alsaif MM; Mortazavi M; Zhuiykov S; Medhekar N; Bhaskaran M; Friend JR; Strano MS; Kalantar-Zadeh K
    Nano Lett; 2015 Feb; 15(2):883-90. PubMed ID: 25562610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fano Resonance and Spectrally Modified Photoluminescence Enhancement in Monolayer MoS2 Integrated with Plasmonic Nanoantenna Array.
    Lee B; Park J; Han GH; Ee HS; Naylor CH; Liu W; Johnson AT; Agarwal R
    Nano Lett; 2015 May; 15(5):3646-53. PubMed ID: 25926239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO
    Liu W; Xu Q
    Chemistry; 2018 Sep; 24(52):13693-13700. PubMed ID: 29676819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Plasmon Resonance-Enhanced Near-Infrared Absorption in Single-Layer MoS
    Min BK; Nguyen VT; Kim SJ; Yi Y; Choi CG
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):14476-14483. PubMed ID: 32125135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dimensional and compositional change of 1D chalcogen nanostructures leading to tunable localized surface plasmon resonances.
    Min Y; Seo HJ; Choi JJ; Hahn BD; Moon GD
    Nanotechnology; 2018 Aug; 29(34):345603. PubMed ID: 29848801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surfactant-free nonaqueous synthesis of plasmonic molybdenum oxide nanosheets with enhanced catalytic activity for hydrogen generation from ammonia borane under visible light.
    Cheng H; Kamegawa T; Mori K; Yamashita H
    Angew Chem Int Ed Engl; 2014 Mar; 53(11):2910-4. PubMed ID: 24520029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced photochromic modulation efficiency: a novel plasmonic molybdenum oxide hybrid.
    Li N; Li Y; Sun G; Zhou Y; Ji S; Yao H; Cao X; Bao S; Jin P
    Nanoscale; 2017 Jun; 9(24):8298-8304. PubMed ID: 28585945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Photothermal Performance among Various Sub-Stoichiometric 2D Oxygen-Deficient Molybdenum Oxide Nanoflakes and In Vivo Toxicity.
    Pandey S; Sharma KH; Sharma AK; Nerthigan Y; Hang DR; Wu HF
    Chemistry; 2018 May; 24(29):7417-7427. PubMed ID: 29493025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substoichiometric two-dimensional molybdenum oxide flakes: a plasmonic gas sensing platform.
    Alsaif MM; Field MR; Murdoch BJ; Daeneke T; Latham K; Chrimes AF; Zoolfakar AS; Russo SP; Ou JZ; Kalantar-zadeh K
    Nanoscale; 2014 Nov; 6(21):12780-91. PubMed ID: 25225830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen Doped Metal Oxide Semiconductors with Exceptional and Tunable Localized Surface Plasmon Resonances.
    Cheng H; Wen M; Ma X; Kuwahara Y; Mori K; Dai Y; Huang B; Yamashita H
    J Am Chem Soc; 2016 Jul; 138(29):9316-24. PubMed ID: 27384437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aluminum nanopyramid array with tunable ultraviolet-visible-infrared wavelength plasmon resonances for rapid detection of carbohydrate antigen 199.
    Li W; Qiu Y; Zhang L; Jiang L; Zhou Z; Chen H; Zhou J
    Biosens Bioelectron; 2016 May; 79():500-7. PubMed ID: 26748367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Photocatalytic Performance of ZnO Nanorods Coupled by Two-Dimensional α-MoO3 Nanoflakes under UV and Visible Light Irradiation.
    Hang DR; Sharma KH; Chen CH; Islam SE
    Chemistry; 2016 Aug; 22(36):12777-84. PubMed ID: 27483050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coherent Plasmon and Phonon-Plasmon Resonances in Carbon Nanotubes.
    Falk AL; Chiu KC; Farmer DB; Cao Q; Tersoff J; Lee YH; Avouris P; Han SJ
    Phys Rev Lett; 2017 Jun; 118(25):257401. PubMed ID: 28696746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon-enhanced photocatalytic activity of iron oxide on gold nanopillars.
    Gao H; Liu C; Jeong HE; Yang P
    ACS Nano; 2012 Jan; 6(1):234-40. PubMed ID: 22147636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable Broadband Solar Energy Absorber Based on Monolayer Transition Metal Dichalcogenides Materials Using Au Nanocubes.
    Li J; Chen Z; Yang H; Yi Z; Chen X; Yao W; Duan T; Wu P; Li G; Yi Y
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32024205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable plasmon resonance of molybdenum oxide nanoparticles synthesized in non-aqueous media.
    Lee SH; Nishi H; Tatsuma T
    Chem Commun (Camb); 2017 Nov; 53(94):12680-12683. PubMed ID: 29134208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.