BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

659 related articles for article (PubMed ID: 24677434)

  • 1. A review of organic and inorganic biomaterials for neural interfaces.
    Fattahi P; Yang G; Kim G; Abidian MR
    Adv Mater; 2014 Mar; 26(12):1846-85. PubMed ID: 24677434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifunctional Nanomaterials for Advancing Neural Interfaces: Recording, Stimulation, and Beyond.
    Ranke D; Lee I; Gershanok SA; Jo S; Trotto E; Wang Y; Balakrishnan G; Cohen-Karni T
    Acc Chem Res; 2024 Jul; 57(13):1803-1814. PubMed ID: 38859612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording.
    Patil AC; Thakor NV
    Med Biol Eng Comput; 2016 Jan; 54(1):23-44. PubMed ID: 26753777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polydopamine-doped conductive polymer microelectrodes for neural recording and stimulation.
    Kim R; Nam Y
    J Neurosci Methods; 2019 Oct; 326():108369. PubMed ID: 31326604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soft Bioelectronics Using Nanomaterials and Nanostructures for Neuroengineering.
    Kim M; Lee H; Nam S; Kim DH; Cha GD
    Acc Chem Res; 2024 Jun; 57(11):1633-1647. PubMed ID: 38752397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Review: Electrode and Packaging Materials for Neurophysiology Recording Implants.
    Yang W; Gong Y; Li W
    Front Bioeng Biotechnol; 2020; 8():622923. PubMed ID: 33585422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes.
    Abidian MR; Martin DC
    Biomaterials; 2008 Mar; 29(9):1273-83. PubMed ID: 18093644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conducting Polymers for Neural Prosthetic and Neural Interface Applications.
    Green R; Abidian MR
    Adv Mater; 2015 Dec; 27(46):7620-37. PubMed ID: 26414302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-Dimensional Ti
    Driscoll N; Richardson AG; Maleski K; Anasori B; Adewole O; Lelyukh P; Escobedo L; Cullen DK; Lucas TH; Gogotsi Y; Vitale F
    ACS Nano; 2018 Oct; 12(10):10419-10429. PubMed ID: 30207690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of Ti3C2 MXene Microelectrode Arrays for In Vivo Neural Recording.
    Driscoll N; Maleski K; Richardson AG; Murphy B; Anasori B; Lucas TH; Gogotsi Y; Vitale F
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32116295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electro-optical Neural Platform Integrated with Nanoplasmonic Inhibition Interface.
    Yoo S; Kim R; Park JH; Nam Y
    ACS Nano; 2016 Apr; 10(4):4274-81. PubMed ID: 26960013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progress towards biocompatible intracortical microelectrodes for neural interfacing applications.
    Jorfi M; Skousen JL; Weder C; Capadona JR
    J Neural Eng; 2015 Feb; 12(1):011001. PubMed ID: 25460808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elastomeric and soft conducting microwires for implantable neural interfaces.
    Kolarcik CL; Luebben SD; Sapp SA; Hanner J; Snyder N; Kozai TD; Chang E; Nabity JA; Nabity ST; Lagenaur CF; Cui XT
    Soft Matter; 2015 Jun; 11(24):4847-61. PubMed ID: 25993261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioactive properties of nanostructured porous silicon for enhancing electrode to neuron interfaces.
    Moxon KA; Hallman S; Aslani A; Kalkhoran NM; Lelkes PI
    J Biomater Sci Polym Ed; 2007; 18(10):1263-81. PubMed ID: 17939885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in Nano Neuroscience: From Nanomaterials to Nanotools.
    Pampaloni NP; Giugliano M; Scaini D; Ballerini L; Rauti R
    Front Neurosci; 2018; 12():953. PubMed ID: 30697140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The potential of graphene coatings as neural interfaces.
    Lopes V; Moreira G; Bramini M; Capasso A
    Nanoscale Horiz; 2024 Feb; 9(3):384-406. PubMed ID: 38231692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene-Embedded Nanostructural Biotic-Abiotic Optoelectrode Arrays Applied for Synchronous Brain Optogenetics and Neural Signal Recording.
    Huang WC; Chi HS; Lee YC; Lo YC; Liu TC; Chiang MY; Chen HY; Li SJ; Chen YY; Chen SY
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11270-11282. PubMed ID: 30844235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural interfaces at the nanoscale.
    Pancrazio JJ
    Nanomedicine (Lond); 2008 Dec; 3(6):823-30. PubMed ID: 19025456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent progress of electroactive interface in neural engineering.
    Shan Y; Cui X; Chen X; Li Z
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023 Jan; 15(1):e01827. PubMed ID: 35715994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.