These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 24677518)

  • 1. Taming the first-order transition in giant magnetocaloric materials.
    Guillou F; Porcari G; Yibole H; van Dijk N; Brück E
    Adv Mater; 2014 May; 26(17):2671-5, 2615. PubMed ID: 24677518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuneable Giant Magnetocaloric Effect in (Mn,Fe)₂(P,Si) Materials by Co-B and Ni-B Co-Doping.
    Thang NV; Dijk NHV; Brück E
    Materials (Basel); 2016 Dec; 10(1):. PubMed ID: 28772373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the Ge distribution on the first order magnetic transition of the MnFe(P,Ge) magnetocaloric material.
    Zhang ZL; Liu DM; Xiao WQ; Li H; Wang SB; Liang YT; Zhang HG; Li SL; Fu JJ; Yue M
    Phys Chem Chem Phys; 2018 Jul; 20(26):18117-18126. PubMed ID: 29938256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Dy substitution in the giant magnetocaloric properties of HoB
    de Castro PB; Terashima K; Yamamoto TD; Iwasaki S; Matsumoto R; Adachi S; Saito Y; Takeya H; Takano Y
    Sci Technol Adv Mater; 2021 Jan; 21(1):849-855. PubMed ID: 33536838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large low field magnetocaloric effect in first-order phase transition compound TlFe
    Mao Q; Yang J; Wang H; Khan R; Du J; Zhou Y; Xu B; Chen Q; Fang M
    Sci Rep; 2016 Sep; 6():34235. PubMed ID: 27681203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large reversible magnetocaloric effect in antiferromagnetic Ho
    Boutahar A; Moubah R; Hlil EK; Lassri H; Lorenzo E
    Sci Rep; 2017 Oct; 7(1):13904. PubMed ID: 29066735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mastering hysteresis in magnetocaloric materials.
    Gutfleisch O; Gottschall T; Fries M; Benke D; Radulov I; Skokov KP; Wende H; Gruner M; Acet M; Entel P; Farle M
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2074):. PubMed ID: 27402928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large Anisotropic Magnetocaloric Effect, Wide Operating Temperature Range, and Large Refrigeration Capacity in Single-Crystal Mn
    Wang S; Fan C; Liu D
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):33237-33243. PubMed ID: 34252274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic Approach for (Mn,Fe)
    He A; Svitlyk V; Mozharivskyj Y
    Inorg Chem; 2017 Mar; 56(5):2827-2833. PubMed ID: 28195712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Giant and reversible extrinsic magnetocaloric effects in La0.7Ca0.3MnO3 films due to strain.
    Moya X; Hueso LE; Maccherozzi F; Tovstolytkin AI; Podyalovskii DI; Ducati C; Phillips LC; Ghidini M; Hovorka O; Berger A; Vickers ME; Defay E; Dhesi SS; Mathur ND
    Nat Mater; 2013 Jan; 12(1):52-8. PubMed ID: 23104152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic relaxation dynamics driven by the first-order character of magnetocaloric La(Fe,Mn,Si)13.
    Lovell E; Bratko M; Caplin AD; Barcza A; Katter M; Ghivelder L; Cohen LF
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2074):. PubMed ID: 27402929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zero-thermal-hysteresis magnetocaloric effect induced by magnetic transition at a morphotropic phase boundary in Heusler Ni
    Zhang Y; Wang J; Ke X; Chang T; Tian F; Zhou C; Yang S; Fang M; Cao K; Chen YS; Sun Z; Guan W; Song X; Ren X
    Phys Chem Chem Phys; 2018 Jul; 20(27):18484-18490. PubMed ID: 29947386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computation-Guided Design of Ni-Mn-Sn Ferromagnetic Shape Memory Alloy with Giant Magnetocaloric Effect and Excellent Mechanical Properties and High Working Temperature via Multielement Doping.
    Zhang K; Tan C; Zhao W; Guo E; Tian X
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):34827-34840. PubMed ID: 31461258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition-metal-based magnetic refrigerants for room-temperature applications.
    Tegus O; Brück E; Buschow KH; de Boer FR
    Nature; 2002 Jan; 415(6868):150-2. PubMed ID: 11805828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A brief review of microstructure design in transition metal-based magnetocaloric materials.
    Gong Y; Miao X; Qian F; Xu F; Caron L
    J Phys Condens Matter; 2024 Sep; 36(50):. PubMed ID: 39293475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct and Indirect Determination of the Magnetocaloric Effect in the Heusler Compound Ni
    Dos Reis RD; Caron L; Singh S; Felser C; Nicklas M
    Entropy (Basel); 2021 Sep; 23(10):. PubMed ID: 34681997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large Low-Field Reversible Magnetocaloric Effect in Itinerant-Electron Hf
    Song Z; Li Z; Yang B; Yan H; Esling C; Zhao X; Zuo L
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. (Magneto)caloric refrigeration: is there light at the end of the tunnel?
    Pecharsky VK; Cui J; Johnson DD
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2074):. PubMed ID: 27402923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetocaloric Materials with Multiple Instabilities.
    Taguchi Y; Sakai H; Choudhury D
    Adv Mater; 2017 Jul; 29(25):. PubMed ID: 28387437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multicaloric cooling cycle that exploits thermal hysteresis.
    Gottschall T; Gràcia-Condal A; Fries M; Taubel A; Pfeuffer L; Mañosa L; Planes A; Skokov KP; Gutfleisch O
    Nat Mater; 2018 Oct; 17(10):929-934. PubMed ID: 30202111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.