These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 24677723)

  • 1. The chondrocytic journey in endochondral bone growth and skeletal dysplasia.
    Tsang KY; Tsang SW; Chan D; Cheah KS
    Birth Defects Res C Embryo Today; 2014 Mar; 102(1):52-73. PubMed ID: 24677723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chondrocyte hypertrophy in skeletal development, growth, and disease.
    Sun MM; Beier F
    Birth Defects Res C Embryo Today; 2014 Mar; 102(1):74-82. PubMed ID: 24677724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endochondral ossification: how cartilage is converted into bone in the developing skeleton.
    Mackie EJ; Ahmed YA; Tatarczuch L; Chen KS; Mirams M
    Int J Biochem Cell Biol; 2008; 40(1):46-62. PubMed ID: 17659995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Association of cartilage-specific deletion of peroxisome proliferator-activated receptor γ with abnormal endochondral ossification and impaired cartilage growth and development in a murine model.
    Monemdjou R; Vasheghani F; Fahmi H; Perez G; Blati M; Taniguchi N; Lotz M; St-Arnaud R; Pelletier JP; Martel-Pelletier J; Beier F; Kapoor M
    Arthritis Rheum; 2012 May; 64(5):1551-61. PubMed ID: 22131019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The hedgehog target Vlk genetically interacts with Gli3 to regulate chondrocyte differentiation during mouse long bone development.
    Probst S; Zeller R; Zuniga A
    Differentiation; 2013; 85(4-5):121-30. PubMed ID: 23792766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of growth factors regulating chondrocyte differentiation in the developing embryo.
    Vortkamp A
    Osteoarthritis Cartilage; 2001; 9 Suppl A():S109-17. PubMed ID: 11680674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmission of ER stress response by ATF6 promotes endochondral bone growth.
    Xiong Z; Jiang R; Zhang P; Han X; Guo FJ
    J Orthop Surg Res; 2015 Sep; 10():141. PubMed ID: 26374329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Runx2 is required for hypertrophic chondrocyte mediated degradation of cartilage matrix during endochondral ossification.
    Rashid H; Chen H; Javed A
    Matrix Biol Plus; 2021 Dec; 12():100088. PubMed ID: 34805821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of Foxc1 and Foxc2 function in chondroprogenitor cells disrupts endochondral ossification.
    Almubarak A; Lavy R; Srnic N; Hu Y; Maripuri DP; Kume T; Berry FB
    J Biol Chem; 2021 Sep; 297(3):101020. PubMed ID: 34331943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chondrocyte-specific knockout of Cbfβ reveals the indispensable function of Cbfβ in chondrocyte maturation, growth plate development and trabecular bone formation in mice.
    Wu M; Li YP; Zhu G; Lu Y; Wang Y; Jules J; McConnell M; Serra R; Shao JZ; Chen W
    Int J Biol Sci; 2014; 10(8):861-72. PubMed ID: 25170300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The skeleton: a multi-functional complex organ: the growth plate chondrocyte and endochondral ossification.
    Mackie EJ; Tatarczuch L; Mirams M
    J Endocrinol; 2011 Nov; 211(2):109-21. PubMed ID: 21642379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanisms of endochondral bone development.
    Provot S; Schipani E
    Biochem Biophys Res Commun; 2005 Mar; 328(3):658-65. PubMed ID: 15694399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skeletogenesis in Xenopus tropicalis: characteristic bone development in an anuran amphibian.
    Miura S; Hanaoka K; Togashi S
    Bone; 2008 Nov; 43(5):901-9. PubMed ID: 18692165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sox5 and Sox6 are needed to develop and maintain source, columnar, and hypertrophic chondrocytes in the cartilage growth plate.
    Smits P; Dy P; Mitra S; Lefebvre V
    J Cell Biol; 2004 Mar; 164(5):747-58. PubMed ID: 14993235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordination of chondrogenesis and osteogenesis by hypertrophic chondrocytes in endochondral bone development.
    Hojo H; Ohba S; Yano F; Chung UI
    J Bone Miner Metab; 2010 Sep; 28(5):489-502. PubMed ID: 20607327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chondrocyte proliferation and differentiation.
    Wuelling M; Vortkamp A
    Endocr Dev; 2011; 21():1-11. PubMed ID: 21865749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The life cycle of chondrocytes in the developing skeleton.
    Shum L; Nuckolls G
    Arthritis Res; 2002; 4(2):94-106. PubMed ID: 11879545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ALK2 functions as a BMP type I receptor and induces Indian hedgehog in chondrocytes during skeletal development.
    Zhang D; Schwarz EM; Rosier RN; Zuscik MJ; Puzas JE; O'Keefe RJ
    J Bone Miner Res; 2003 Sep; 18(9):1593-604. PubMed ID: 12968668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of signaling pathways regulating chondrocyte differentiation during endochondral bone formation.
    Adams SL; Cohen AJ; Lassová L
    J Cell Physiol; 2007 Dec; 213(3):635-41. PubMed ID: 17886256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chondrogenic potential of skeletal cell populations: selective growth of chondrocytes and their morphogenesis and development in vitro.
    Gerstenfeld LC; Toma CD; Schaffer JL; Landis WJ
    Microsc Res Tech; 1998 Oct; 43(2):156-73. PubMed ID: 9823002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.