BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 24677805)

  • 1. Injectable redox-polymerized methylcellulose hydrogels as potential soft tissue filler materials.
    Gold GT; Varma DM; Harbottle D; Gupta MS; Stalling SS; Taub PJ; Nicoll SB
    J Biomed Mater Res A; 2014 Dec; 102(12):4536-44. PubMed ID: 24677805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of crosslinked methylcellulose hydrogels for soft tissue augmentation using an ammonium persulfate-ascorbic acid redox system.
    Gold GT; Varma DM; Taub PJ; Nicoll SB
    Carbohydr Polym; 2015 Dec; 134():497-507. PubMed ID: 26428151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Injectable carboxymethylcellulose hydrogels for soft tissue filler applications.
    Varma DM; Gold GT; Taub PJ; Nicoll SB
    Acta Biomater; 2014 Dec; 10(12):4996-5004. PubMed ID: 25152355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of photocrosslinked methylcellulose hydrogels for soft tissue reconstruction.
    Stalling SS; Akintoye SO; Nicoll SB
    Acta Biomater; 2009 Jul; 5(6):1911-8. PubMed ID: 19303378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionalization of hyaluronic acid with chemoselective groups via a disulfide-based protection strategy for in situ formation of mechanically stable hydrogels.
    Ossipov DA; Piskounova S; Varghese OP; Hilborn J
    Biomacromolecules; 2010 Sep; 11(9):2247-54. PubMed ID: 20704177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of cross-linking reagents for hyaluronic acid hydrogel dermal fillers on tissue augmentation and regeneration.
    Yeom J; Bhang SH; Kim BS; Seo MS; Hwang EJ; Cho IH; Park JK; Hahn SK
    Bioconjug Chem; 2010 Feb; 21(2):240-7. PubMed ID: 20078098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Introducing chemical functionality in Fmoc-peptide gels for cell culture.
    Jayawarna V; Richardson SM; Hirst AR; Hodson NW; Saiani A; Gough JE; Ulijn RV
    Acta Biomater; 2009 Mar; 5(3):934-43. PubMed ID: 19249724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of redox polymerisation on degradation and cell responses to poly (vinyl alcohol) hydrogels.
    Mawad D; Martens PJ; Odell RA; Poole-Warren LA
    Biomaterials; 2007 Feb; 28(6):947-55. PubMed ID: 17084445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermo-responsive methylcellulose hydrogels as temporary substrate for cell sheet biofabrication.
    Altomare L; Cochis A; Carletta A; Rimondini L; Farè S
    J Mater Sci Mater Med; 2016 May; 27(5):95. PubMed ID: 26984360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The calcium silicate/alginate composite: preparation and evaluation of its behavior as bioactive injectable hydrogels.
    Han Y; Zeng Q; Li H; Chang J
    Acta Biomater; 2013 Nov; 9(11):9107-17. PubMed ID: 23796407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of hyaluronan-methylcellulose hydrogels for cell delivery to the injured spinal cord.
    Caicco MJ; Zahir T; Mothe AJ; Ballios BG; Kihm AJ; Tator CH; Shoichet MS
    J Biomed Mater Res A; 2013 May; 101(5):1472-7. PubMed ID: 23129254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel living cell sheet harvest system composed of thermoreversible methylcellulose hydrogels.
    Chen CH; Tsai CC; Chen W; Mi FL; Liang HF; Chen SC; Sung HW
    Biomacromolecules; 2006 Mar; 7(3):736-43. PubMed ID: 16529408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agarose and methylcellulose hydrogel blends for nerve regeneration applications.
    Martin BC; Minner EJ; Wiseman SL; Klank RL; Gilbert RJ
    J Neural Eng; 2008 Jun; 5(2):221-31. PubMed ID: 18503105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanotailored hyaluronic acid modified methylcellulose as an injectable scaffold with enhanced physico-rheological and biological aspects.
    Das B; Basu A; Maji S; Dutta K; Dewan M; Adhikary A; Maiti TK; Chattopadhyay D
    Carbohydr Polym; 2020 Jun; 237():116146. PubMed ID: 32241450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A protocol for rheological characterization of hydrogels for tissue engineering strategies.
    Zuidema JM; Rivet CJ; Gilbert RJ; Morrison FA
    J Biomed Mater Res B Appl Biomater; 2014 Jul; 102(5):1063-73. PubMed ID: 24357498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of bassorin (derived from gum tragacanth) and halloysite nanotubes on physicochemical properties and the osteoconductivity of methylcellulose-based injectable hydrogels.
    Varshosaz J; Sajadi-Javan ZS; Kouhi M; Mirian M
    Int J Biol Macromol; 2021 Dec; 192():869-882. PubMed ID: 34634330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro integration of human skin dermis with porous cationic hydrogels.
    Peramo A; Bahng JH; Marcelo CL; Kotov N; Martin DC
    Acta Biomater; 2009 Nov; 5(9):3337-45. PubMed ID: 19481182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rapid temperature-responsive sol-gel reversible poly(N-isopropylacrylamide)-g-methylcellulose copolymer hydrogel.
    Liu W; Zhang B; Lu WW; Li X; Zhu D; De Yao K; Wang Q; Zhao C; Wang C
    Biomaterials; 2004 Jul; 25(15):3005-12. PubMed ID: 14967533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elastin based cell-laden injectable hydrogels with tunable gelation, mechanical and biodegradation properties.
    Fathi A; Mithieux SM; Wei H; Chrzanowski W; Valtchev P; Weiss AS; Dehghani F
    Biomaterials; 2014 Jul; 35(21):5425-35. PubMed ID: 24731705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Injectable and Self-Healing Dynamic Hydrogels Based on Metal(I)-Thiolate/Disulfide Exchange as Biomaterials with Tunable Mechanical Properties.
    Casuso P; Odriozola I; Pérez-San Vicente A; Loinaz I; Cabañero G; Grande HJ; Dupin D
    Biomacromolecules; 2015 Nov; 16(11):3552-61. PubMed ID: 26418440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.