These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
364 related articles for article (PubMed ID: 24678016)
1. Nano/microfibrous polymeric constructs loaded with bioactive agents and designed for tissue engineering applications: a review. Puppi D; Zhang X; Yang L; Chiellini F; Sun X; Chiellini E J Biomed Mater Res B Appl Biomater; 2014 Oct; 102(7):1562-79. PubMed ID: 24678016 [TBL] [Abstract][Full Text] [Related]
3. Combination of electrospinning with other techniques for the fabrication of 3D polymeric and composite nanofibrous scaffolds with improved cellular interactions. Bongiovanni Abel S; Montini Ballarin F; Abraham GA Nanotechnology; 2020 Apr; 31(17):172002. PubMed ID: 31931493 [TBL] [Abstract][Full Text] [Related]
4. Optimization of polycaprolactone fibrous scaffold for heart valve tissue engineering. Jana S; Bhagia A; Lerman A Biomed Mater; 2019 Oct; 14(6):065014. PubMed ID: 31593551 [TBL] [Abstract][Full Text] [Related]
5. Advancements in electrospinning of polymeric nanofibrous scaffolds for tissue engineering. Ingavle GC; Leach JK Tissue Eng Part B Rev; 2014 Aug; 20(4):277-93. PubMed ID: 24004443 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional endothelial cell incorporation within bioactive nanofibrous scaffolds through concurrent emulsion electrospinning and coaxial cell electrospraying. Zhao Q; Zhou Y; Wang M Acta Biomater; 2021 Mar; 123():312-324. PubMed ID: 33508508 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of microfibrous and nano-/microfibrous scaffolds: melt and hybrid electrospinning and surface modification of poly(L-lactic acid) with plasticizer. Yoon YI; Park KE; Lee SJ; Park WH Biomed Res Int; 2013; 2013():309048. PubMed ID: 24381937 [TBL] [Abstract][Full Text] [Related]
8. Controlled Bioactive Molecules Delivery Strategies for Tendon and Ligament Tissue Engineering using Polymeric Nanofibers. Hiong Teh TK; Hong Goh JC; Toh SL Curr Pharm Des; 2015; 21(15):1991-2005. PubMed ID: 25732661 [TBL] [Abstract][Full Text] [Related]
9. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance. Kennedy KM; Bhaw-Luximon A; Jhurry D Acta Biomater; 2017 Mar; 50():41-55. PubMed ID: 28011142 [TBL] [Abstract][Full Text] [Related]
10. The combination of nanofibrous and microfibrous materials for enhancement of cell infiltration and in vivo bone tissue formation. Rampichová M; Chvojka J; Jenčová V; Kubíková T; Tonar Z; Erben J; Buzgo M; Daňková J; Litvinec A; Vocetková K; Plencner M; Prosecká E; Sovková V; Lukášová V; Králíčková M; Lukáš D; Amler E Biomed Mater; 2018 Jan; 13(2):025004. PubMed ID: 29084934 [TBL] [Abstract][Full Text] [Related]
11. Polymeric nanofibers in tissue engineering. Dahlin RL; Kasper FK; Mikos AG Tissue Eng Part B Rev; 2011 Oct; 17(5):349-64. PubMed ID: 21699434 [TBL] [Abstract][Full Text] [Related]
12. Collagen intermingled chitosan-tripolyphosphate nano/micro fibrous scaffolds for tissue-engineering application. Pati F; Adhikari B; Dhara S J Biomater Sci Polym Ed; 2012; 23(15):1923-38. PubMed ID: 21967759 [TBL] [Abstract][Full Text] [Related]
13. Chitosan-collagen scaffolds with nano/microfibrous architecture for skin tissue engineering. Sarkar SD; Farrugia BL; Dargaville TR; Dhara S J Biomed Mater Res A; 2013 Dec; 101(12):3482-92. PubMed ID: 23606420 [TBL] [Abstract][Full Text] [Related]
14. Fabrication and characterization of novel ethyl cellulose-grafted-poly (ɛ-caprolactone)/alginate nanofibrous/macroporous scaffolds incorporated with nano-hydroxyapatite for bone tissue engineering. Hokmabad VR; Davaran S; Aghazadeh M; Rahbarghazi R; Salehi R; Ramazani A J Biomater Appl; 2019 Mar; 33(8):1128-1144. PubMed ID: 30651055 [TBL] [Abstract][Full Text] [Related]
15. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Yoo HS; Kim TG; Park TG Adv Drug Deliv Rev; 2009 Oct; 61(12):1033-42. PubMed ID: 19643152 [TBL] [Abstract][Full Text] [Related]
16. Strategic design of cardiac mimetic core-shell nanofibrous scaffold impregnated with Salvianolic acid B and Magnesium l-ascorbic acid 2 phosphate for myoblast differentiation. Shoba E; Lakra R; Kiran MS; Korrapati PS Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():131-147. PubMed ID: 29853076 [TBL] [Abstract][Full Text] [Related]
17. Nanofibers and Microfibers for Osteochondral Tissue Engineering. Ortega Z; Alemán ME; Donate R Adv Exp Med Biol; 2018; 1058():97-123. PubMed ID: 29691819 [TBL] [Abstract][Full Text] [Related]
18. A new method for the production of gelatin microparticles for controlled protein release from porous polymeric scaffolds. Ozkizilcik A; Tuzlakoglu K J Tissue Eng Regen Med; 2014 Mar; 8(3):242-7. PubMed ID: 22499408 [TBL] [Abstract][Full Text] [Related]
19. Incorporating platelet-rich plasma into coaxial electrospun nanofibers for bone tissue engineering. Cheng G; Ma X; Li J; Cheng Y; Cao Y; Wang Z; Shi X; Du Y; Deng H; Li Z Int J Pharm; 2018 Aug; 547(1-2):656-666. PubMed ID: 29886100 [TBL] [Abstract][Full Text] [Related]
20. Nano-fibrous tissue engineering scaffolds capable of growth factor delivery. Hu J; Ma PX Pharm Res; 2011 Jun; 28(6):1273-81. PubMed ID: 21234657 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]