These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24678046)

  • 41. Zigzag graphene nanoribbons with saturated edges.
    Kudin KN
    ACS Nano; 2008 Mar; 2(3):516-22. PubMed ID: 19206578
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Production of graphene sheets by direct dispersion with aromatic healing agents.
    Zhang M; Parajuli RR; Mastrogiovanni D; Dai B; Lo P; Cheung W; Brukh R; Chiu PL; Zhou T; Liu Z; Garfunkel E; He H
    Small; 2010 May; 6(10):1100-7. PubMed ID: 20449847
    [No Abstract]   [Full Text] [Related]  

  • 43. Humanin: a novel functional molecule for the green synthesis of graphene.
    Gurunathan S; Han J; Kim JH
    Colloids Surf B Biointerfaces; 2013 Nov; 111():376-83. PubMed ID: 23850746
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stability of graphene edges under electron beam: equilibrium energetics versus dynamic effects.
    Kotakoski J; Santos-Cottin D; Krasheninnikov AV
    ACS Nano; 2012 Jan; 6(1):671-6. PubMed ID: 22188561
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Preparation and characterization of some graphene based nanocomposite materials.
    Sheshmani S; Amini R
    Carbohydr Polym; 2013 Jun; 95(1):348-59. PubMed ID: 23618279
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of gas phase equilibria on the chemical vapor deposition of graphene.
    Lewis AM; Derby B; Kinloch IA
    ACS Nano; 2013 Apr; 7(4):3104-17. PubMed ID: 23484546
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Annealing free, clean graphene transfer using alternative polymer scaffolds.
    Wood JD; Doidge GP; Carrion EA; Koepke JC; Kaitz JA; Datye I; Behnam A; Hewaparakrama J; Aruin B; Chen Y; Dong H; Haasch RT; Lyding JW; Pop E
    Nanotechnology; 2015 Feb; 26(5):055302. PubMed ID: 25580991
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking.
    Park S; Lee KS; Bozoklu G; Cai W; Nguyen ST; Ruoff RS
    ACS Nano; 2008 Mar; 2(3):572-8. PubMed ID: 19206584
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Raman study of ion-induced defects in N-layer graphene.
    Jorio A; Lucchese MM; Stavale F; Ferreira EH; Moutinho MV; Capaz RB; Achete CA
    J Phys Condens Matter; 2010 Aug; 22(33):334204. PubMed ID: 21386494
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thermal enhancement of chemical doping in graphene: a Raman spectroscopy study.
    Malard LM; Moreira RL; Elias DC; Plentz F; Alves ES; Pimenta MA
    J Phys Condens Matter; 2010 Aug; 22(33):334202. PubMed ID: 21386492
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nanoscale chemical imaging of single-layer graphene.
    Stadler J; Schmid T; Zenobi R
    ACS Nano; 2011 Oct; 5(10):8442-8. PubMed ID: 21957895
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Eco-friendly one-pot synthesis of highly dispersible functionalized graphene nanosheets with free amino groups.
    Liu Z; Duan X; Qian G; Zhou X; Yuan W
    Nanotechnology; 2013 Feb; 24(4):045609. PubMed ID: 23299661
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis of S-doped graphene by liquid precursor.
    Gao H; Liu Z; Song L; Guo W; Gao W; Ci L; Rao A; Quan W; Vajtai R; Ajayan PM
    Nanotechnology; 2012 Jul; 23(27):275605. PubMed ID: 22710561
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Self-assembled graphene platelet-glucose oxidase nanostructures for glucose biosensing.
    Liu S; Tian J; Wang L; Luo Y; Lu W; Sun X
    Biosens Bioelectron; 2011 Jul; 26(11):4491-6. PubMed ID: 21652199
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tunable stress and controlled thickness modification in graphene by annealing.
    Ni ZH; Wang HM; Ma Y; Kasim J; Wu YH; Shen ZX
    ACS Nano; 2008 May; 2(5):1033-9. PubMed ID: 19206501
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Halogenated graphenes: rapidly growing family of graphene derivatives.
    Karlický F; Kumara Ramanatha Datta K; Otyepka M; Zbořil R
    ACS Nano; 2013 Aug; 7(8):6434-64. PubMed ID: 23808482
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Graphene edges: a review of their fabrication and characterization.
    Jia X; Campos-Delgado J; Terrones M; Meunier V; Dresselhaus MS
    Nanoscale; 2011 Jan; 3(1):86-95. PubMed ID: 21103548
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Searching for magnetism in hydrogenated graphene: using highly hydrogenated graphene prepared via Birch reduction of graphite oxides.
    Eng AY; Poh HL; Šaněk F; Maryško M; Matějková S; Sofer Z; Pumera M
    ACS Nano; 2013 Jul; 7(7):5930-9. PubMed ID: 23777325
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Graphene: nanoscale processing and recent applications.
    Biró LP; Nemes-Incze P; Lambin P
    Nanoscale; 2012 Mar; 4(6):1824-39. PubMed ID: 22080243
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthesis of dispersible ferromagnetic graphene nanoribbon stacks with enhanced electrical percolation properties in a magnetic field.
    Genorio B; Peng Z; Lu W; Price Hoelscher BK; Novosel B; Tour JM
    ACS Nano; 2012 Nov; 6(11):10396-404. PubMed ID: 23116171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.