BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 24678507)

  • 21. Adsorptive removal of Cu(II) from aqueous solution and industrial effluent using natural/agricultural wastes.
    Singha B; Das SK
    Colloids Surf B Biointerfaces; 2013 Jul; 107():97-106. PubMed ID: 23466548
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison on the Surface Structure Properties along with Fe(II) and Mn(II) Removal Characteristics of Rice Husk Ash, Inactive
    Jiang Z; Cao B; Su G; Lu Y; Zhao J; Shan D; Zhang X; Wang Z; Zhang Y
    Biomed Res Int; 2016; 2016():7183951. PubMed ID: 28042571
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adsorption of Cu(II) ions from aqueous solutions on biochars prepared from agricultural by-products.
    Pellera FM; Giannis A; Kalderis D; Anastasiadou K; Stegmann R; Wang JY; Gidarakos E
    J Environ Manage; 2012 Apr; 96(1):35-42. PubMed ID: 22208396
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis, characterization, and application of iron oxyhydroxide coated with rice husk for fluoride removal from aqueous media.
    Pillai P; Lakhtaria Y; Dharaskar S; Khalid M
    Environ Sci Pollut Res Int; 2020 Jun; 27(17):20606-20620. PubMed ID: 31368069
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation and characterization of rice husk adsorbents for phenol removal from aqueous systems.
    Daffalla SB; Mukhtar H; Shaharun MS
    PLoS One; 2020; 15(12):e0243540. PubMed ID: 33275643
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arsenic and fluoride removal by potato peel and rice husk (PPRH) ash in aqueous environments.
    Bibi S; Farooqi A; Yasmin A; Kamran MA; Niazi NK
    Int J Phytoremediation; 2017 Nov; 19(11):1029-1036. PubMed ID: 28441035
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Equilibrium, kinetic and thermodynamic studies on the removal of U(VI) by low cost agricultural waste.
    Kausar A; Bhatti HN; MacKinnon G
    Colloids Surf B Biointerfaces; 2013 Nov; 111():124-33. PubMed ID: 23787279
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Removal of Cu²⁺ from aqueous solutions by the novel modified bagasse pulp cellulose: Kinetics, isotherm and mechanism.
    Zhu HX; Cao XJ; He YC; Kong QP; He H; Wang J
    Carbohydr Polym; 2015 Sep; 129():115-26. PubMed ID: 26050896
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic and equilibrium isotherm studies for the adsorptive removal of Brilliant Green dye from aqueous solution by rice husk ash.
    Mane VS; Deo Mall I; Chandra Srivastava V
    J Environ Manage; 2007 Sep; 84(4):390-400. PubMed ID: 17000044
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimization of process conditions for preparation of activated carbon from waste Salix psammophila and its adsorption behavior on fluoroquinolone antibiotics.
    Liu X; Wan Y; Liu P; Zhao L; Zou W
    Water Sci Technol; 2018 Jun; 77(11-12):2555-2565. PubMed ID: 29944121
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adsorption characteristics of Cu(II) and Zn(II) by nano-alumina material synthesized by the sol-gel method in batch mode.
    Wang RY; Zhang W; Zhang LY; Hua T; Tang G; Peng XQ; Hao MH; Zuo QT
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1595-1605. PubMed ID: 30446911
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modification and characterization of PET fibers for fast removal of Hg(II), Cu(II) and Co(II) metal ions from aqueous solutions.
    Monier M; Abdel-Latif DA
    J Hazard Mater; 2013 Apr; 250-251():122-30. PubMed ID: 23435202
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling of Cu(II) Adsorption from an Aqueous Solution Using an Artificial Neural Network (ANN).
    Khan T; Binti Abd Manan TS; Isa MH; Ghanim AAJ; Beddu S; Jusoh H; Iqbal MS; Ayele GT; Jami MS
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32708928
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Removal of hinosan from underground water using NH
    Hashemi MMR; Abolghasemi SS; Ashournia M; Modaberi H
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20344-20351. PubMed ID: 31098907
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Removal of Cr(VI) from aqueous solutions using pre-consumer processing agricultural waste: a case study of rice husk.
    Bansal M; Garg U; Singh D; Garg VK
    J Hazard Mater; 2009 Feb; 162(1):312-20. PubMed ID: 18573603
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pb(II), Cu(II) and Cd(II) removal through untreated rice husk; thermodynamics and kinetics.
    Guiso MG; Alberti G; Emma G; Pesavento M; Biesuz R
    Anal Sci; 2012; 28(10):993-9. PubMed ID: 23059996
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heavy metals removal from wastewaters using organic solid waste-rice husk.
    Sobhanardakani S; Parvizimosaed H; Olyaie E
    Environ Sci Pollut Res Int; 2013 Aug; 20(8):5265-71. PubMed ID: 23381799
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biosorption of Cu(II) ions onto the litter of natural trembling poplar forest.
    Dundar M; Nuhoglu C; Nuhoglu Y
    J Hazard Mater; 2008 Feb; 151(1):86-95. PubMed ID: 17601663
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient removal of copper ions using a hydrogel bead triggered by the cationic hectorite clay and anionic sodium alginate.
    Tong D; Fang K; Yang H; Wang J; Zhou C; Yu W
    Environ Sci Pollut Res Int; 2019 Jun; 26(16):16482-16492. PubMed ID: 30982191
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toxic metals biosorption by Jatropha curcas deoiled cake: equilibrium and kinetic studies.
    Rawat AP; Rawat M; Rai JP
    Water Environ Res; 2013 Aug; 85(8):733-42. PubMed ID: 24003599
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.