BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24678632)

  • 21. Pharmaceutical characterization of solid and dispersed carbon nanotubes as nanoexcipients.
    Ivanova MV; Lamprecht C; Loureiro MJ; Huzil JT; Foldvari M
    Int J Nanomedicine; 2012; 7():403-15. PubMed ID: 22334774
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sorption of organophosphate esters by carbon nanotubes.
    Yan W; Yan L; Duan J; Jing C
    J Hazard Mater; 2014 May; 273():53-60. PubMed ID: 24721694
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption.
    Schierz A; Zänker H
    Environ Pollut; 2009 Apr; 157(4):1088-94. PubMed ID: 19010575
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Manganese peroxidase degrades pristine but not surface-oxidized (carboxylated) single-walled carbon nanotubes.
    Zhang C; Chen W; Alvarez PJ
    Environ Sci Technol; 2014 Jul; 48(14):7918-23. PubMed ID: 24988479
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancement of field emission characteristics of carbon nanotubes on oxidation.
    Mathur A; Roy SS; Ray SC; Hazra KS; Hamilton J; Dickinson C; McLaughlin J; Misra DS
    J Nanosci Nanotechnol; 2011 Aug; 11(8):7011-4. PubMed ID: 22103114
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enzyme-catalyzed oxidation facilitates the return of fluorescence for single-walled carbon nanotubes.
    Chiu CF; Barth BA; Kotchey GP; Zhao Y; Gogick KA; Saidi WA; Petoud S; Star A
    J Am Chem Soc; 2013 Sep; 135(36):13356-64. PubMed ID: 23672715
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Probing Photosensitization by Functionalized Carbon Nanotubes.
    Chen CY; Zepp RG
    Environ Sci Technol; 2015 Dec; 49(23):13835-43. PubMed ID: 26186124
    [TBL] [Abstract][Full Text] [Related]  

  • 28. H2O2 Detection at Carbon Nanotubes and Nitrogen-Doped Carbon Nanotubes: Oxidation, Reduction, or Disproportionation?
    Goran JM; Phan EN; Favela CA; Stevenson KJ
    Anal Chem; 2015 Jun; 87(12):5989-96. PubMed ID: 26009497
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon-Nanotubes-Supported Pd Nanoparticles for Alcohol Oxidations in Fuel Cells: Effect of Number of Nanotube Walls on Activity.
    Zhang J; Lu S; Xiang Y; Shen PK; Liu J; Jiang SP
    ChemSusChem; 2015 Sep; 8(17):2956-66. PubMed ID: 25900368
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sonochemical oxidation of multiwalled carbon nanotubes.
    Xing Y; Li L; Chusuei CC; Hull RV
    Langmuir; 2005 Apr; 21(9):4185-90. PubMed ID: 15835993
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-performance non-enzymatic catalysts based on 3D hierarchical hollow porous Co
    Wang S; Zhang X; Huang J; Chen J
    Anal Bioanal Chem; 2018 Mar; 410(7):2019-2029. PubMed ID: 29392380
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo degradation of functionalized carbon nanotubes after stereotactic administration in the brain cortex.
    Nunes A; Bussy C; Gherardini L; Meneghetti M; Herrero MA; Bianco A; Prato M; Pizzorusso T; Al-Jamal KT; Kostarelos K
    Nanomedicine (Lond); 2012 Oct; 7(10):1485-94. PubMed ID: 22712575
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fenton-like reaction driving the degradation and uptake of multi-walled carbon nanotubes mediated by bacterium.
    Wang J; Shan S; Ma Q; Zhang Z; Dong H; Li S; Diko CS; Qu Y
    Chemosphere; 2021 Jul; 275():129888. PubMed ID: 33662725
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antibacterial effects of carbon nanotubes: size does matter!
    Kang S; Herzberg M; Rodrigues DF; Elimelech M
    Langmuir; 2008 Jun; 24(13):6409-13. PubMed ID: 18512881
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbon Nanotube Emissions from Arc Discharge Production: Classification of Particle Types with Electron Microscopy and Comparison with Direct Reading Techniques.
    Ludvigsson L; Isaxon C; Nilsson PT; Tinnerberg H; Messing ME; Rissler J; Skaug V; Gudmundsson A; Bohgard M; Hedmer M; Pagels J
    Ann Occup Hyg; 2016 May; 60(4):493-512. PubMed ID: 26748380
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of carbon nanotubes network toxicity in zebrafish (Danio rerio) model.
    Filho Jde S; Matsubara EY; Franchi LP; Martins IP; Rivera LM; Rosolen JM; Grisolia CK
    Environ Res; 2014 Oct; 134():9-16. PubMed ID: 25042031
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In Situ Synthesis of Horseradish Peroxidase Nanoflower@Carbon Nanotube Hybrid Nanobiocatalysts with Greatly Enhanced Catalytic Activity.
    Dadi S; Temur N; Gul OT; Yilmaz V; Ocsoy I
    Langmuir; 2023 Apr; 39(13):4819-4828. PubMed ID: 36944167
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibitory effects of carbon nanotubes on the degradation of 14C-2,4-dichlorophenol in soil.
    Zhou W; Shan J; Jiang B; Wang L; Feng J; Guo H; Ji R
    Chemosphere; 2013 Jan; 90(2):527-34. PubMed ID: 22963879
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An amperometric biosensor based on multiwalled carbon nanotube-poly(pyrrole)-horseradish peroxidase nanobiocomposite film for determination of phenol derivatives.
    Korkut S; Keskinler B; Erhan E
    Talanta; 2008 Sep; 76(5):1147-52. PubMed ID: 18761169
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbon nanotubes for biomedical imaging: the recent advances.
    Gong H; Peng R; Liu Z
    Adv Drug Deliv Rev; 2013 Dec; 65(15):1951-63. PubMed ID: 24184130
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.