BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 24678660)

  • 1. Vertically aligned carbon nanotube-sheathed carbon fibers as pristine microelectrodes for selective monitoring of ascorbate in vivo.
    Xiang L; Yu P; Hao J; Zhang M; Zhu L; Dai L; Mao L
    Anal Chem; 2014 Apr; 86(8):3909-14. PubMed ID: 24678660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Platinized aligned carbon nanotube-sheathed carbon fiber microelectrodes for in vivo amperometric monitoring of oxygen.
    Xiang L; Yu P; Zhang M; Hao J; Wang Y; Zhu L; Dai L; Mao L
    Anal Chem; 2014 May; 86(10):5017-23. PubMed ID: 24773301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon nanotube-modified carbon fiber microelectrodes for in vivo voltammetric measurement of ascorbic acid in rat brain.
    Zhang M; Liu K; Xiang L; Lin Y; Su L; Mao L
    Anal Chem; 2007 Sep; 79(17):6559-65. PubMed ID: 17676820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable and Reproducible Sheath of Carbon Fibers with Single-Walled Carbon Nanotubes through Electrophoretic Deposition for In Vivo Electrochemical Measurements.
    Xiao T; Jiang Y; Ji W; Mao L
    Anal Chem; 2018 Apr; 90(7):4840-4846. PubMed ID: 29517222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous measurements of ascorbate and glutamate in vivo in the rat brain using carbon fiber nanocomposite sensors and microbiosensor arrays.
    Ferreira NR; Ledo A; Laranjinha J; Gerhardt GA; Barbosa RM
    Bioelectrochemistry; 2018 Jun; 121():142-150. PubMed ID: 29413864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous on-line monitoring of extracellular ascorbate depletion in the rat striatum induced by global ischemia with carbon nanotube-modified glassy carbon electrode integrated into a thin-layer radial flow cell.
    Zhang M; Liu K; Gong K; Su L; Chen Y; Mao L
    Anal Chem; 2005 Oct; 77(19):6234-42. PubMed ID: 16194084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discrimination of dopamine and ascorbic acid using carbon nanotube fiber microelectrodes.
    Viry L; Derré A; Poulin P; Kuhn A
    Phys Chem Chem Phys; 2010 Sep; 12(34):9993-5. PubMed ID: 20623074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: Correlation of electrochemical performance and surface properties.
    Yang C; Trikantzopoulos E; Jacobs CB; Venton BJ
    Anal Chim Acta; 2017 May; 965():1-8. PubMed ID: 28366206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo.
    Swamy BE; Venton BJ
    Analyst; 2007 Sep; 132(9):876-84. PubMed ID: 17710262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein Pretreatment of Microelectrodes Enables in Vivo Electrochemical Measurements with Easy Precalibration and Interference-Free from Proteins.
    Liu X; Zhang M; Xiao T; Hao J; Li R; Mao L
    Anal Chem; 2016 Jul; 88(14):7238-44. PubMed ID: 27327860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vertically aligned carbon nanotube electrodes directly grown on a glassy carbon electrode.
    Park S; Park DW; Yang CS; Kim KR; Kwak JH; So HM; Ahn CW; Kim BS; Chang H; Lee JO
    ACS Nano; 2011 Sep; 5(9):7061-8. PubMed ID: 21838325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanotube yarn electrodes for enhanced detection of neurotransmitter dynamics in live brain tissue.
    Schmidt AC; Wang X; Zhu Y; Sombers LA
    ACS Nano; 2013 Sep; 7(9):7864-73. PubMed ID: 23941323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ferricyanide-backfilled cylindrical carbon fiber microelectrodes for in vivo analysis with high stability and low polarized potential.
    Zhong P; Yu P; Wang K; Hao J; Fei J; Mao L
    Analyst; 2015 Nov; 140(21):7154-9. PubMed ID: 26378690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous and simultaneous electrochemical measurements of glucose, lactate, and ascorbate in rat brain following brain ischemia.
    Lin Y; Yu P; Hao J; Wang Y; Ohsaka T; Mao L
    Anal Chem; 2014 Apr; 86(8):3895-901. PubMed ID: 24621127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Galvanic Redox Potentiometry Based Microelectrode Array for Synchronous Ascorbate and Single-Unit Recordings in Rat Brain.
    Wei H; Li L; Jin J; Wu F; Yu P; Ma F; Mao L
    Anal Chem; 2020 Jul; 92(14):10177-10182. PubMed ID: 32600032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bottom-up SiO2 embedded carbon nanotube electrodes with superior performance for integration in implantable neural microsystems.
    Musa S; Rand DR; Cott DJ; Loo J; Bartic C; Eberle W; Nuttin B; Borghs G
    ACS Nano; 2012 Jun; 6(6):4615-28. PubMed ID: 22551016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ratiometric electrochemical sensor for effective and reliable detection of ascorbic acid in living brains.
    Cheng H; Wang X; Wei H
    Anal Chem; 2015 Sep; 87(17):8889-95. PubMed ID: 26244714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo determination of extracellular brain ascorbate.
    Miele M; Fillenz M
    J Neurosci Methods; 1996 Dec; 70(1):15-9. PubMed ID: 8982976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotube fiber microelectrodes show a higher resistance to dopamine fouling.
    Harreither W; Trouillon R; Poulin P; Neri W; Ewing AG; Safina G
    Anal Chem; 2013 Aug; 85(15):7447-53. PubMed ID: 23789970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo electrochemical monitoring of the change of cochlear perilymph ascorbate during salicylate-induced tinnitus.
    Liu J; Yu P; Lin Y; Zhou N; Li T; Ma F; Mao L
    Anal Chem; 2012 Jun; 84(12):5433-8. PubMed ID: 22703231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.