These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 24678669)

  • 1. Light harvesting proteins for solar fuel generation in bioengineered photoelectrochemical cells.
    Ihssen J; Braun A; Faccio G; Gajda-Schrantz K; Thöny-Meyer L
    Curr Protein Pept Sci; 2014; 15(4):374-84. PubMed ID: 24678669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes.
    Sivula K; Le Formal F; Grätzel M
    ChemSusChem; 2011 Apr; 4(4):432-49. PubMed ID: 21416621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Optically and Electrochemically Decoupled Monolithic Photoelectrochemical Cell for High-Performance Solar-Driven Water Splitting.
    Oh S; Song H; Oh J
    Nano Lett; 2017 Sep; 17(9):5416-5422. PubMed ID: 28800240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overall Photoelectrochemical Water Splitting using Tandem Cell under Simulated Sunlight.
    Kim JH; Kaneko H; Minegishi T; Kubota J; Domen K; Lee JS
    ChemSusChem; 2016 Jan; 9(1):61-6. PubMed ID: 26668101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron based photoanodes for solar fuel production.
    Bassi PS; Gurudayal ; Wong LH; Barber J
    Phys Chem Chem Phys; 2014 Jun; 16(24):11834-42. PubMed ID: 24469680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L
    Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological components and bioelectronic interfaces of water splitting photoelectrodes for solar hydrogen production.
    Braun A; Boudoire F; Bora DK; Faccio G; Hu Y; Kroll A; Mun BS; Wilson ST
    Chemistry; 2015 Mar; 21(11):4188-99. PubMed ID: 25504590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hematite-NiO/α-Ni(OH)2 heterostructure photoanodes with high electrocatalytic current density and charge storage capacity.
    Bora DK; Braun A; Erni R; Müller U; Döbeli M; Constable EC
    Phys Chem Chem Phys; 2013 Aug; 15(30):12648-59. PubMed ID: 23788236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy and environmental applications of Sn
    Nagappagari LR; Lee J; Lee H; Jeong B; Lee K
    Environ Pollut; 2021 Feb; 271():116318. PubMed ID: 33360662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial photosynthesis for solar fuels.
    Styring S
    Faraday Discuss; 2012; 155():357-76. PubMed ID: 22470985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solar water splitting in a molecular photoelectrochemical cell.
    Alibabaei L; Brennaman MK; Norris MR; Kalanyan B; Song W; Losego MD; Concepcion JJ; Binstead RA; Parsons GN; Meyer TJ
    Proc Natl Acad Sci U S A; 2013 Dec; 110(50):20008-13. PubMed ID: 24277806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoelectrochemical hydrogen production from biomass derivatives and water.
    Lu X; Xie S; Yang H; Tong Y; Ji H
    Chem Soc Rev; 2014 Nov; 43(22):7581-93. PubMed ID: 24599050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fuel Production from Seawater and Fuel Cells Using Seawater.
    Fukuzumi S; Lee YM; Nam W
    ChemSusChem; 2017 Nov; 10(22):4264-4276. PubMed ID: 28914497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grey hematite photoanodes decrease the onset potential in photoelectrochemical water oxidation.
    Liu PF; Wang C; Wang Y; Li Y; Zhang B; Zheng LR; Jiang Z; Zhao H; Yang HG
    Sci Bull (Beijing); 2021 May; 66(10):1013-1021. PubMed ID: 36654246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transparent Stacked Photoanodes with Efficient Light Management for Solar-Driven Photoelectrochemical Cells.
    Nguyen TT; Patel M; Kim S; Dao VA; Kim J
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):10181-10190. PubMed ID: 33617239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of doping (C or N) and co-doping (C+N) on the photoactive properties of magnetron sputtered titania coatings for the application of solar water-splitting.
    Rahman M; Dang BH; McDonnell K; MacElroy JM; Dowling DP
    J Nanosci Nanotechnol; 2012 Jun; 12(6):4729-35. PubMed ID: 22905523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bismuth Vanadate Photoelectrodes with High Photovoltage as Photoanode and Photocathode in Photoelectrochemical Cells for Water Splitting.
    Dos Santos WS; Rodriguez M; Khoury JMO; Nascimento LA; Ribeiro RJP; Mesquita JP; Silva AC; Nogueira FGE; Pereira MC
    ChemSusChem; 2018 Feb; 11(3):589-597. PubMed ID: 29193761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solar Water Splitting Utilizing a SiC Photocathode, a BiVO
    Iwase A; Kudo A; Numata Y; Ikegami M; Miyasaka T; Ichikawa N; Kato M; Hashimoto H; Inoue H; Ishitani O; Tamiaki H
    ChemSusChem; 2017 Nov; 10(22):4420-4423. PubMed ID: 28960942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances and recent trends in heterogeneous photo(electro)-catalysis for solar fuels and chemicals.
    Highfield J
    Molecules; 2015 Apr; 20(4):6739-93. PubMed ID: 25884553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.