These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 24678734)

  • 21. Structures and Short Linear Motif of Disordered Transcription Factor Regions Provide Clues to the Interactome of the Cellular Hub Protein Radical-induced Cell Death1.
    O'Shea C; Staby L; Bendsen SK; Tidemand FG; Redsted A; Willemoës M; Kragelund BB; Skriver K
    J Biol Chem; 2017 Jan; 292(2):512-527. PubMed ID: 27881680
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DISOPRED3: precise disordered region predictions with annotated protein-binding activity.
    Jones DT; Cozzetto D
    Bioinformatics; 2015 Mar; 31(6):857-63. PubMed ID: 25391399
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational prediction of disordered binding regions.
    Basu S; Kihara D; Kurgan L
    Comput Struct Biotechnol J; 2023; 21():1487-1497. PubMed ID: 36851914
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction modules that impart specificity to disordered protein.
    Cermakova K; Hodges HC
    Trends Biochem Sci; 2023 May; 48(5):477-490. PubMed ID: 36754681
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Peptide-based Interaction Proteomics.
    Meyer K; Selbach M
    Mol Cell Proteomics; 2020 Jul; 19(7):1070-1075. PubMed ID: 32345597
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Disordered Protein Kinase Regions in Regulation of Kinase Domain Cores.
    Gógl G; Kornev AP; Reményi A; Taylor SS
    Trends Biochem Sci; 2019 Apr; 44(4):300-311. PubMed ID: 30611608
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Profiling of 3696 Nuclear Receptor-Coregulator Interactions: A Resource for Biological and Clinical Discovery.
    Broekema MF; Hollman DAA; Koppen A; van den Ham HJ; Melchers D; Pijnenburg D; Ruijtenbeek R; van Mil SWC; Houtman R; Kalkhoven E
    Endocrinology; 2018 Jun; 159(6):2397-2407. PubMed ID: 29718163
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Disordered RNA-Binding Region Prediction with DisoRDPbind.
    Oldfield CJ; Peng Z; Kurgan L
    Methods Mol Biol; 2020; 2106():225-239. PubMed ID: 31889261
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SLiMSearch 2.0: biological context for short linear motifs in proteins.
    Davey NE; Haslam NJ; Shields DC; Edwards RJ
    Nucleic Acids Res; 2011 Jul; 39(Web Server issue):W56-60. PubMed ID: 21622654
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intrinsically disordered N-terminal domain of the Helicoverpa armigera Ultraspiracle stabilizes the dimeric form via a scorpion-like structure.
    Wycisk K; Tarczewska A; Kaus-Drobek M; Dadlez M; Hołubowicz R; Pietras Z; Dziembowski A; Taube M; Kozak M; Orłowski M; Ożyhar A
    J Steroid Biochem Mol Biol; 2018 Oct; 183():167-183. PubMed ID: 29944921
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Masking residues using context-specific evolutionary conservation significantly improves short linear motif discovery.
    Davey NE; Shields DC; Edwards RJ
    Bioinformatics; 2009 Feb; 25(4):443-50. PubMed ID: 19136552
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrating statistical predictions and experimental verifications for enhancing protein-chemical interaction predictions in virtual screening.
    Nagamine N; Shirakawa T; Minato Y; Torii K; Kobayashi H; Imoto M; Sakakibara Y
    PLoS Comput Biol; 2009 Jun; 5(6):e1000397. PubMed ID: 19503826
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational identification and analysis of protein short linear motifs.
    Davey NE; Edwards RJ; Shields DC
    Front Biosci (Landmark Ed); 2010 Jun; 15(3):801-25. PubMed ID: 20515727
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring Short Linear Motifs Using the ELM Database and Tools.
    Gouw M; Sámano-Sánchez H; Van Roey K; Diella F; Gibson TJ; Dinkel H
    Curr Protoc Bioinformatics; 2017 Jun; 58():8.22.1-8.22.35. PubMed ID: 28654726
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The SLiMDisc server: short, linear motif discovery in proteins.
    Davey NE; Edwards RJ; Shields DC
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W455-9. PubMed ID: 17576682
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A structure filter for the Eukaryotic Linear Motif Resource.
    Via A; Gould CM; Gemünd C; Gibson TJ; Helmer-Citterich M
    BMC Bioinformatics; 2009 Oct; 10():351. PubMed ID: 19852836
    [TBL] [Abstract][Full Text] [Related]  

  • 37. cnnAlpha: Protein disordered regions prediction by reduced amino acid alphabets and convolutional neural networks.
    Oberti M; Vaisman II
    Proteins; 2020 Nov; 88(11):1472-1481. PubMed ID: 32535960
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting Protein-Protein Interfaces that Bind Intrinsically Disordered Protein Regions.
    Wong ETC; Gsponer J
    J Mol Biol; 2019 Aug; 431(17):3157-3178. PubMed ID: 31207240
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Androgen receptor ligand-binding domain interaction and nuclear receptor specificity of FXXLF and LXXLL motifs as determined by L/F swapping.
    Dubbink HJ; Hersmus R; Pike AC; Molier M; Brinkmann AO; Jenster G; Trapman J
    Mol Endocrinol; 2006 Aug; 20(8):1742-55. PubMed ID: 16627595
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of Disordered RNA, DNA, and Protein Binding Regions Using DisoRDPbind.
    Peng Z; Wang C; Uversky VN; Kurgan L
    Methods Mol Biol; 2017; 1484():187-203. PubMed ID: 27787828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.