These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 24678734)

  • 41. Analyzing the Sequences of Intrinsically Disordered Regions with CIDER and localCIDER.
    Ginell GM; Holehouse AS
    Methods Mol Biol; 2020; 2141():103-126. PubMed ID: 32696354
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The role of intrinsic protein disorder in regulation of cyclin-dependent kinases.
    Phillips AH; Kriwacki RW
    Curr Opin Struct Biol; 2024 Oct; 88():102906. PubMed ID: 39142260
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Orchestration of signaling by structural disorder in class 1 cytokine receptors.
    Seiffert P; Bugge K; Nygaard M; Haxholm GW; Martinsen JH; Pedersen MN; Arleth L; Boomsma W; Kragelund BB
    Cell Commun Signal; 2020 Aug; 18(1):132. PubMed ID: 32831102
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sequence conservation of protein binding segments in intrinsically disordered regions.
    Ota H; Fukuchi S
    Biochem Biophys Res Commun; 2017 Dec; 494(3-4):602-607. PubMed ID: 29066345
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparative Analysis of Structural Features in SLiMs from Eukaryotes, Bacteria, and Viruses with Importance for Host-Pathogen Interactions.
    Elkhaligy H; Balbin CA; Siltberg-Liberles J
    Pathogens; 2022 May; 11(5):. PubMed ID: 35631103
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The eukaryotic linear motif resource - 2018 update.
    Gouw M; Michael S; Sámano-Sánchez H; Kumar M; Zeke A; Lang B; Bely B; Chemes LB; Davey NE; Deng Z; Diella F; Gürth CM; Huber AK; Kleinsorg S; Schlegel LS; Palopoli N; Roey KV; Altenberg B; Reményi A; Dinkel H; Gibson TJ
    Nucleic Acids Res; 2018 Jan; 46(D1):D428-D434. PubMed ID: 29136216
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computational modelling of linear motif-mediated protein interactions.
    Kobe B; Boden M
    Curr Top Med Chem; 2012; 12(14):1553-61. PubMed ID: 22827524
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prediction of short linear protein binding regions.
    Mooney C; Pollastri G; Shields DC; Haslam NJ
    J Mol Biol; 2012 Jan; 415(1):193-204. PubMed ID: 22079048
    [TBL] [Abstract][Full Text] [Related]  

  • 49. SLiMs in intrinsically disordered protein regions regulate the cell cycle dynamics of ORC1-CDC6 interaction and pre-replicative complex assembly.
    Faustova I; Loog M
    Mol Cell; 2021 May; 81(9):1861-1862. PubMed ID: 33961774
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs.
    Obenauer JC; Cantley LC; Yaffe MB
    Nucleic Acids Res; 2003 Jul; 31(13):3635-41. PubMed ID: 12824383
    [TBL] [Abstract][Full Text] [Related]  

  • 51. How viral proteins bind short linear motifs and intrinsically disordered domains.
    Madhu P; Davey NE; Ivarsson Y
    Essays Biochem; 2022 Dec; ():. PubMed ID: 36504386
    [TBL] [Abstract][Full Text] [Related]  

  • 52. DisoMCS: Accurately Predicting Protein Intrinsically Disordered Regions Using a Multi-Class Conservative Score Approach.
    Wang Z; Yang Q; Li T; Cong P
    PLoS One; 2015; 10(6):e0128334. PubMed ID: 26090958
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-throughput prediction of disordered moonlighting regions in protein sequences.
    Meng F; Kurgan L
    Proteins; 2018 Oct; 86(10):1097-1110. PubMed ID: 30099775
    [TBL] [Abstract][Full Text] [Related]  

  • 54. SLiMPrints: conservation-based discovery of functional motif fingerprints in intrinsically disordered protein regions.
    Davey NE; Cowan JL; Shields DC; Gibson TJ; Coldwell MJ; Edwards RJ
    Nucleic Acids Res; 2012 Nov; 40(21):10628-41. PubMed ID: 22977176
    [TBL] [Abstract][Full Text] [Related]  

  • 55. SLiMAn 2.0: meaningful navigation through peptide-protein interaction networks.
    Reys V; Pons JL; Labesse G
    Nucleic Acids Res; 2024 Jul; 52(W1):W313-W317. PubMed ID: 38783158
    [TBL] [Abstract][Full Text] [Related]  

  • 56. MotSASi: Functional short linear motifs (SLiMs) prediction based on genomic single nucleotide variants and structural data.
    Martín M; Brunello FG; Modenutti CP; Nicola JP; Marti MA
    Biochimie; 2022 Jun; 197():59-73. PubMed ID: 35134457
    [TBL] [Abstract][Full Text] [Related]  

  • 57. SLiMFinder: a web server to find novel, significantly over-represented, short protein motifs.
    Davey NE; Haslam NJ; Shields DC; Edwards RJ
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W534-9. PubMed ID: 20497999
    [TBL] [Abstract][Full Text] [Related]  

  • 58. FOXP in Tetrapoda: Intrinsically Disordered Regions, Short Linear Motifs and their evolutionary significance.
    Viscardi LH; Tovo-Rodrigues L; Paré P; Fagundes NJR; Salzano FM; Paixão-Côrtes VR; Bau CHD; Bortolini MC
    Genet Mol Biol; 2017; 40(1):181-190. PubMed ID: 28257525
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural Insights into the Interaction of the Intrinsically Disordered Co-activator TIF2 with Retinoic Acid Receptor Heterodimer (RXR/RAR).
    Senicourt L; le Maire A; Allemand F; Carvalho JE; Guee L; Germain P; Schubert M; Bernadó P; Bourguet W; Sibille N
    J Mol Biol; 2021 Apr; 433(9):166899. PubMed ID: 33647291
    [TBL] [Abstract][Full Text] [Related]  

  • 60. HH-MOTiF: de novo detection of short linear motifs in proteins by Hidden Markov Model comparisons.
    Prytuliak R; Volkmer M; Meier M; Habermann BH
    Nucleic Acids Res; 2017 Jul; 45(W1):W470-W477. PubMed ID: 28460141
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.