These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 24678821)

  • 1. Ethyl 2-cyano-2-(4-nitrophenylsulfonyloxyimino)acetate-mediated Lossen rearrangement: single-pot racemization-free synthesis of hydroxamic acids and ureas from carboxylic acids.
    Thalluri K; Manne SR; Dev D; Mandal B
    J Org Chem; 2014 May; 79(9):3765-75. PubMed ID: 24678821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of carbodiimide mediated Lossen rearrangement for the synthesis of alpha-ureidopeptides and peptidyl ureas employing N-urethane alpha-amino/peptidyl hydroxamic acids.
    Narendra N; Chennakrishnareddy G; Sureshbabu VV
    Org Biomol Chem; 2009 Sep; 7(17):3520-6. PubMed ID: 19675909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New and simple synthesis of acid azides, ureas and carbamates from carboxylic acids: application of peptide coupling agents EDC and HBTU.
    Sureshbabu VV; Lalithamba HS; Narendra N; Hemantha HP
    Org Biomol Chem; 2010 Feb; 8(4):835-40. PubMed ID: 20135041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Curtius rearrangement of aromatic carboxylic acids to access protected anilines and aromatic ureas.
    Lebel H; Leogane O
    Org Lett; 2006 Dec; 8(25):5717-20. PubMed ID: 17134255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consecutive Lossen rearrangement/transamidation reaction of hydroxamic acids under catalyst- and additive-free conditions.
    Jia M; Zhang H; Lin Y; Chen D; Chen Y; Xia Y
    Org Biomol Chem; 2018 May; 16(19):3615-3624. PubMed ID: 29708257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-pot synthesis of ureas from Boc-protected amines.
    Spyropoulos C; Kokotos CG
    J Org Chem; 2014 May; 79(10):4477-83. PubMed ID: 24750028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple one-flask method for the preparation of hydroxamic acids.
    Giacomelli G; Porcheddu A; Salaris M
    Org Lett; 2003 Jul; 5(15):2715-7. PubMed ID: 12868897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revisiting a Classic Transformation: A Lossen Rearrangement Initiated by Nitriles and "Pseudo-Catalytic" in Isocyanate.
    Strotman NA; Ortiz A; Savage SA; Wilbert CR; Ayers S; Kiau S
    J Org Chem; 2017 Apr; 82(8):4044-4049. PubMed ID: 28394130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation, isolation, and characterization of Nalpha-Fmoc-peptide isocyanates: solution synthesis of oligo-alpha-peptidyl ureas.
    Sureshbabu VV; Patil BS; Venkataramanarao R
    J Org Chem; 2006 Sep; 71(20):7697-705. PubMed ID: 16995676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-Methylimidazole-catalyzed synthesis of carbamates from hydroxamic acids via the Lossen rearrangement.
    Yoganathan S; Miller SJ
    Org Lett; 2013 Feb; 15(3):602-5. PubMed ID: 23327543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbonyldiimidazole-mediated Lossen rearrangement.
    Dubé P; Nathel NF; Vetelino M; Couturier M; Aboussafy CL; Pichette S; Jorgensen ML; Hardink M
    Org Lett; 2009 Dec; 11(24):5622-5. PubMed ID: 19908883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of γ-azido-β-ureido ketones and their transformation into functionalized pyrrolines and pyrroles via Staudinger/aza-Wittig reaction.
    Fesenko AA; Shutalev AD
    J Org Chem; 2013 Feb; 78(3):1190-207. PubMed ID: 23256785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of
    Hayashi J; Kobayashi D; Namikawa C; Denda M; Otaka A
    Org Lett; 2024 May; 26(20):4246-4250. PubMed ID: 38738629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethyl 2-cyano-2-(2-nitrobenzenesulfonyloxyimino)acetate (o-NosylOXY): a recyclable coupling reagent for racemization-free synthesis of peptide, amide, hydroxamate, and ester.
    Dev D; Palakurthy NB; Thalluri K; Chandra J; Mandal B
    J Org Chem; 2014 Jun; 79(12):5420-31. PubMed ID: 24849944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoorganocatalytic One-Pot Synthesis of Hydroxamic Acids from Aldehydes.
    Papadopoulos GN; Kokotos CG
    Chemistry; 2016 May; 22(20):6964-7. PubMed ID: 27038037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple-turnover isotopic labeling of Fmoc- and Boc-protected amino acids with oxygen isotopes.
    Seyfried MS; Lauber BS; Luedtke NW
    Org Lett; 2010 Jan; 12(1):104-6. PubMed ID: 20035564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boronate urea activation of nitrocyclopropane carboxylates.
    So SS; Auvil TJ; Garza VJ; Mattson AE
    Org Lett; 2012 Jan; 14(2):444-7. PubMed ID: 22208166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expanding Synthesizable Space of Disubstituted 1,2,4-Oxadiazoles.
    Tolmachev A; Bogolubsky AV; Pipko SE; Grishchenko AV; Ushakov DV; Zhemera AV; Viniychuk OO; Konovets AI; Zaporozhets OA; Mykhailiuk PK; Moroz YS
    ACS Comb Sci; 2016 Oct; 18(10):616-624. PubMed ID: 27548754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A modular flow reactor for performing Curtius rearrangements as a continuous flow process.
    Baumann M; Baxendale IR; Ley SV; Nikbin N; Smith CD; Tierney JP
    Org Biomol Chem; 2008 May; 6(9):1577-86. PubMed ID: 18421389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxyma-based phosphates for racemization-free peptide segment couplings.
    Mitachi K; Kurosu YE; Hazlett BT; Kurosu M
    J Pept Sci; 2016 Mar; 22(3):186-91. PubMed ID: 26856693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.