BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 24678966)

  • 1. Examining electrostatic preorganization in monoamine oxidases A and B by structural comparison and pKa calculations.
    Repič M; Purg M; Vianello R; Mavri J
    J Phys Chem B; 2014 Apr; 118(16):4326-32. PubMed ID: 24678966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Study of the pKa Values of Potential Catalytic Residues in the Active Site of Monoamine Oxidase B.
    Borštnar R; Repič M; Kamerlin SC; Vianello R; Mavri J
    J Chem Theory Comput; 2012 Oct; 8(10):3864-70. PubMed ID: 26593027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional role of the "aromatic cage" in human monoamine oxidase B: structures and catalytic properties of Tyr435 mutant proteins.
    Li M; Binda C; Mattevi A; Edmondson DE
    Biochemistry; 2006 Apr; 45(15):4775-84. PubMed ID: 16605246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How fast monoamine oxidases decompose adrenaline? Kinetics of isoenzymes A and B evaluated by empirical valence bond simulation.
    Oanca G; Stare J; Mavri J
    Proteins; 2017 Dec; 85(12):2170-2178. PubMed ID: 28836294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Empirical valence bond simulations of the hydride transfer step in the monoamine oxidase B catalyzed metabolism of dopamine.
    Repič M; Vianello R; Purg M; Duarte F; Bauer P; Kamerlin SC; Mavri J
    Proteins; 2014 Dec; 82(12):3347-55. PubMed ID: 25220264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Mechanistic study of monoamine oxidase: significance for MAO A and MAO B in situ].
    Ramsay RR
    Vopr Med Khim; 1997; 43(6):457-70. PubMed ID: 9503563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural properties of human monoamine oxidases A and B.
    Binda C; Mattevi A; Edmondson DE
    Int Rev Neurobiol; 2011; 100():1-11. PubMed ID: 21971000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The aromatic cage in the active site of monoamine oxidase B: effect on the structural and electronic properties of bound benzylamine and p-nitrobenzylamine.
    Akyüz MA; Erdem SS; Edmondson DE
    J Neural Transm (Vienna); 2007; 114(6):693-8. PubMed ID: 17401536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and molecular modeling of some novel hexahydroindazole derivatives as potent monoamine oxidase inhibitors.
    Gökhan-Kelekçi N; Simşek OO; Ercan A; Yelekçi K; Sahin ZS; Işik S; Uçar G; Bilgin AA
    Bioorg Med Chem; 2009 Sep; 17(18):6761-72. PubMed ID: 19682910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What a Difference a Methyl Group Makes: The Selectivity of Monoamine Oxidase B Towards Histamine and N-Methylhistamine.
    Maršavelski A; Vianello R
    Chemistry; 2017 Feb; 23(12):2915-2925. PubMed ID: 28052533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New pyrrole inhibitors of monoamine oxidase: synthesis, biological evaluation, and structural determinants of MAO-A and MAO-B selectivity.
    La Regina G; Silvestri R; Artico M; Lavecchia A; Novellino E; Befani O; Turini P; Agostinelli E
    J Med Chem; 2007 Mar; 50(5):922-31. PubMed ID: 17256833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The FAD binding sites of human monoamine oxidases A and B.
    Edmondson DE; Binda C; Mattevi A
    Neurotoxicology; 2004 Jan; 25(1-2):63-72. PubMed ID: 14697881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recognition dynamics of dopamine to human Monoamine oxidase B: role of Leu171/Gln206 and conserved water molecules in the active site cavity.
    Dasgupta S; Mukherjee S; Mukhopadhyay BP; Banerjee A; Mishra DK
    J Biomol Struct Dyn; 2018 May; 36(6):1439-1462. PubMed ID: 28460566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Isolation and characterization of an evolutionary precursor of human monoamine oxidases A and B].
    Singer TP; Iankovskaia VL; Bernard S; Cronin C; Sablin SO
    Vopr Med Khim; 1997; 43(6):440-56. PubMed ID: 9503562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Modeling of monoamine oxidase B active site by computer moulding].
    Veselovskiĭ AV; Tikhonova OV; Ivanov AS; Medvedev AE
    Vopr Med Khim; 2001; 47(6):642-51. PubMed ID: 11925756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of monoamine oxidases: past, present, and future.
    Iacovino LG; Magnani F; Binda C
    J Neural Transm (Vienna); 2018 Nov; 125(11):1567-1579. PubMed ID: 30167931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and mechanistic studies of arylalkylhydrazine inhibition of human monoamine oxidases A and B.
    Binda C; Wang J; Li M; Hubalek F; Mattevi A; Edmondson DE
    Biochemistry; 2008 May; 47(20):5616-25. PubMed ID: 18426226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, synthesis, in vitro MAO-B inhibitory evaluation, and computational studies of some 6-nitrobenzothiazole-derived semicarbazones.
    Tripathi RK; Goshain O; Ayyannan SR
    ChemMedChem; 2013 Mar; 8(3):462-74. PubMed ID: 23325700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational modeling of the direct hydride transfer mechanism for the MAO catalyzed oxidation of phenethylamine and benzylamine: ONIOM (QM/QM) calculations.
    Akyüz MA; Erdem SS
    J Neural Transm (Vienna); 2013 Jun; 120(6):937-45. PubMed ID: 23619993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational comparison of imidazoline association with the I2 binding site in human monoamine oxidases.
    Basile L; Pappalardo M; Guccione S; Milardi D; Ramsay RR
    J Chem Inf Model; 2014 Apr; 54(4):1200-7. PubMed ID: 24601544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.