BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 24678972)

  • 1. Assessment of metabolic flux distribution in the thermophilic hydrogen producer Caloramator celer as affected by external pH and hydrogen partial pressure.
    Ciranna A; Pawar SS; Santala V; Karp M; van Niel EW
    Microb Cell Fact; 2014 Mar; 13(1):48. PubMed ID: 24678972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic flux analysis of Clostridium thermosuccinogenes: effects of pH and culture redox potential.
    Sridhar J; Eiteman MA
    Appl Biochem Biotechnol; 2001 Apr; 94(1):51-69. PubMed ID: 11393356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of metabolism using stoichiometry in fermentative biohydrogen.
    Lee HS; Rittmann BE
    Biotechnol Bioeng; 2009 Feb; 102(3):749-58. PubMed ID: 18828179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of substrate loading on hydrogen production during anaerobic fermentation by Clostridium thermocellum 27405.
    Islam R; Cicek N; Sparling R; Levin D
    Appl Microbiol Biotechnol; 2006 Sep; 72(3):576-83. PubMed ID: 16685495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The chemostat study of metabolic distribution in extreme-thermophilic (70°C) mixed culture fermentation.
    Zhang F; Chen Y; Dai K; Zeng RJ
    Appl Microbiol Biotechnol; 2014 Dec; 98(24):10267-73. PubMed ID: 25341404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous hydrogen production during fermentation of alpha-cellulose by the thermophillic bacterium Clostridium thermocellum.
    Magnusson L; Cicek N; Sparling R; Levin D
    Biotechnol Bioeng; 2009 Feb; 102(3):759-66. PubMed ID: 18828175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidating central metabolic redox obstacles hindering ethanol production in Clostridium thermocellum.
    Thompson RA; Layton DS; Guss AM; Olson DG; Lynd LR; Trinh CT
    Metab Eng; 2015 Nov; 32():207-219. PubMed ID: 26497628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling product formation in anaerobic mixed culture fermentations.
    Rodríguez J; Kleerebezem R; Lema JM; van Loosdrecht MC
    Biotechnol Bioeng; 2006 Feb; 93(3):592-606. PubMed ID: 16273553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reassessment of hydrogen tolerance in Caldicellulosiruptor saccharolyticus.
    Willquist K; Pawar SS; Van Niel EW
    Microb Cell Fact; 2011 Dec; 10():111. PubMed ID: 22189215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli.
    Durnin G; Clomburg J; Yeates Z; Alvarez PJ; Zygourakis K; Campbell P; Gonzalez R
    Biotechnol Bioeng; 2009 May; 103(1):148-61. PubMed ID: 19189409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linking genome content to biofuel production yields: a meta-analysis of major catabolic pathways among select H2 and ethanol-producing bacteria.
    Carere CR; Rydzak T; Verbeke TJ; Cicek N; Levin DB; Sparling R
    BMC Microbiol; 2012 Dec; 12():295. PubMed ID: 23249097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of formate and hydrogen, and flux of reducing equivalents and carbon in Ruminococcus flavefaciens FD-1.
    Shi Y; Weimer PJ; Ralph J
    Antonie Van Leeuwenhoek; 1997 Aug; 72(2):101-9. PubMed ID: 9298188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of pH and substrate concentrations on dark fermentative biohydrogen production from xylose by extreme thermophilic mixed culture.
    Qiu C; Shi P; Xiao S; Sun L
    World J Microbiol Biotechnol; 2017 Jan; 33(1):7. PubMed ID: 27858340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon and energy balances of glucose fermentation with hydrogenproducing bacterium Citrobacter amalonaticus Y19.
    Oh YK; Park S; Seol EH; Kim SH; Kim MS; Hwang JW; Ryu DD
    J Microbiol Biotechnol; 2008 Mar; 18(3):532-8. PubMed ID: 18388473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation.
    Kongjan P; Min B; Angelidaki I
    Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applying metabolic flux analysis to hydrogen fermentation using a metabolic network constructed for anaerobic mixed cultures.
    Cheng HH; Whang LM
    Environ Res; 2023 Oct; 235():116636. PubMed ID: 37442252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of transcription and enzyme activities in redistribution of carbon and electron flux in response to N₂ and H₂ sparging of open-batch cultures of Clostridium thermocellum ATCC 27405.
    Carere CR; Rydzak T; Cicek N; Levin DB; Sparling R
    Appl Microbiol Biotechnol; 2014 Mar; 98(6):2829-40. PubMed ID: 24463715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical analysis of hydrogen production from mixed culture fermentation under thermophilic condition (60 °C).
    Zheng H; Zeng RJ; O'Sullivan C; Clarke WP
    Appl Microbiol Biotechnol; 2016 Jun; 100(11):5165-76. PubMed ID: 27052381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH and a mixed carbon-substrate spectrum influence FocA- and FocB-dependent, formate-driven H2 production in Escherichia coli.
    Hakobyan B; Pinske C; Sawers G; Trchounian A; Trchounian K
    FEMS Microbiol Lett; 2018 Nov; 365(21):. PubMed ID: 30247527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flux balance analysis of different carbon source fermentation with hydrogen producing Clostridium butyricum using Cell Net Analyzer.
    Rafieenia R; Chaganti SR
    Bioresour Technol; 2015 Jan; 175():613-8. PubMed ID: 25453441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.