These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 2467903)
1. Cation channels from ciliary membrane of Tetrahymena reconstituted into planar lipid bilayer. Comparison between the channels from the wild T. thermophila and from its mutant which does not show ciliary reversal. Fujiwara C; Anzai K; Kirino Y; Nagao S; Nozawa Y; Takahashi M J Biochem; 1988 Sep; 104(3):344-8. PubMed ID: 2467903 [TBL] [Abstract][Full Text] [Related]
2. Ion permeability of ciliary membrane vesicles isolated from Tetrahymena. Single-channel recording study on the membrane reconstituted into a planar lipid bilayer. Kawahara S; Kirino Y; Nagao S; Nozawa Y J Biochem; 1986 Dec; 100(6):1569-73. PubMed ID: 2437103 [TBL] [Abstract][Full Text] [Related]
3. A cation channel for K+ and Ca2+ from Tetrahymena cilia in planar lipid bilayers. Oosawa Y; Sokabe M; Kasai M Cell Struct Funct; 1988 Feb; 13(1):51-60. PubMed ID: 2453296 [TBL] [Abstract][Full Text] [Related]
4. Cation channels from Tetrahymena cilia incorporated into planar lipid bilayers. Oosawa Y; Sokabe M Am J Physiol; 1985 Jul; 249(1 Pt 1):C177-9. PubMed ID: 2409811 [TBL] [Abstract][Full Text] [Related]
5. Ionic currents of channels that are permeable to monovalent and divalent cations. Oosawa Y Biophys J; 1989 Dec; 56(6):1217-23. PubMed ID: 2482084 [TBL] [Abstract][Full Text] [Related]
6. Incorporation of calcium channels from cardiac sarcolemmal membrane vesicles into planar lipid bilayers. Ehrlich BE; Schen CR; Garcia ML; Kaczorowski GJ Proc Natl Acad Sci U S A; 1986 Jan; 83(1):193-7. PubMed ID: 2417238 [TBL] [Abstract][Full Text] [Related]
7. A voltage-dependent chloride channel from Tetrahymena ciliary membrane incorporated into planar lipid bilayers. Fujiwara-Hirashima C; Anzai K; Takahashi M; Kirino Y Biochim Biophys Acta; 1996 Apr; 1280(2):207-16. PubMed ID: 8639695 [TBL] [Abstract][Full Text] [Related]
8. Inner arm dynein 1 is essential for Ca++-dependent ciliary reversals in Tetrahymena thermophila. Hennessey TM; Kim DY; Oberski DJ; Hard R; Rankin SA; Pennock DG Cell Motil Cytoskeleton; 2002 Dec; 53(4):281-8. PubMed ID: 12378538 [TBL] [Abstract][Full Text] [Related]
9. Divalent cation conduction in the ryanodine receptor channel of sheep cardiac muscle sarcoplasmic reticulum. Tinker A; Williams AJ J Gen Physiol; 1992 Sep; 100(3):479-93. PubMed ID: 1279095 [TBL] [Abstract][Full Text] [Related]
10. Gibbs-Donnan ratio and channel conductance of Tetrahymena cilia in mixed solution of K+ and Ca2+. Oosawa Y; Kasai M Biophys J; 1988 Sep; 54(3):407-10. PubMed ID: 2462927 [TBL] [Abstract][Full Text] [Related]
11. Ion channel classes in purified olfactory cilia membranes: planar lipid bilayer studies. Jorquera O; Latorre R; Labarca P Am J Physiol; 1995 Nov; 269(5 Pt 1):C1235-44. PubMed ID: 7491914 [TBL] [Abstract][Full Text] [Related]
12. Cation and anion channels in rat and human spermatozoa. Chan HC; Zhou TS; Fu WO; Wang WP; Shi YL; Wong PY Biochim Biophys Acta; 1997 Jan; 1323(1):117-29. PubMed ID: 9030218 [TBL] [Abstract][Full Text] [Related]
13. Reconstitution in planar lipid bilayers of a Ca2+-dependent K+ channel from transverse tubule membranes isolated from rabbit skeletal muscle. Latorre R; Vergara C; Hidalgo C Proc Natl Acad Sci U S A; 1982 Feb; 79(3):805-9. PubMed ID: 6278496 [TBL] [Abstract][Full Text] [Related]
14. Further characterization of the cation channel of a yeast vacuolar membrane in a planar lipid bilayer. Sato M; Tanifuji M; Kasai M Cell Struct Funct; 1989 Dec; 14(6):659-68. PubMed ID: 2483360 [TBL] [Abstract][Full Text] [Related]
15. Ion-channels reconstituted into lipid bilayer from human sperm plasma membrane. Shi YL; Ma XH Mol Reprod Dev; 1998 Jul; 50(3):354-60. PubMed ID: 9621312 [TBL] [Abstract][Full Text] [Related]
16. Cardiac calcium channels in planar lipid bilayers. L-type channels and calcium-permeable channels open at negative membrane potentials. Rosenberg RL; Hess P; Tsien RW J Gen Physiol; 1988 Jul; 92(1):27-54. PubMed ID: 2844956 [TBL] [Abstract][Full Text] [Related]
17. A Ca2+-activated channel from Xenopus laevis oocyte membranes reconstituted into planar bilayers. Young GP; Young JD; Deshpande AK; Goldstein M; Koide SS; Cohn ZA Proc Natl Acad Sci U S A; 1984 Aug; 81(16):5155-9. PubMed ID: 6089180 [TBL] [Abstract][Full Text] [Related]
18. Echinococcus granulosus: partial characterization of the conductive properties of two cation channels from protoscoleces of the ovine strain, reconstituted on planar lipid bilayers. Grosman C; Reisin IL Exp Parasitol; 1995 Dec; 81(4):546-55. PubMed ID: 8542996 [TBL] [Abstract][Full Text] [Related]
19. Activation by odorants of a multistate cation channel from olfactory cilia. Labarca P; Simon SA; Anholt RR Proc Natl Acad Sci U S A; 1988 Feb; 85(3):944-7. PubMed ID: 2448786 [TBL] [Abstract][Full Text] [Related]
20. Inositol (1,4,5)-trisphosphate (InsP3)-gated Ca channels from cerebellum: conduction properties for divalent cations and regulation by intraluminal calcium. Bezprozvanny I; Ehrlich BE J Gen Physiol; 1994 Nov; 104(5):821-56. PubMed ID: 7876825 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]