These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
401 related articles for article (PubMed ID: 24679076)
1. Integrative network analysis of the signaling cascades in seedling leaves of bread wheat by large-scale phosphoproteomic profiling. Lv DW; Ge P; Zhang M; Cheng ZW; Li XH; Yan YM J Proteome Res; 2014 May; 13(5):2381-95. PubMed ID: 24679076 [TBL] [Abstract][Full Text] [Related]
2. Large-scale phosphoproteome analysis in seedling leaves of Brachypodium distachyon L. Lv DW; Li X; Zhang M; Gu AQ; Zhen SM; Wang C; Li XH; Yan YM BMC Genomics; 2014 May; 15(1):375. PubMed ID: 24885693 [TBL] [Abstract][Full Text] [Related]
3. Site-specific phosphorylation profiling of Arabidopsis proteins by mass spectrometry and peptide chip analysis. de la Fuente van Bentem S; Anrather D; Dohnal I; Roitinger E; Csaszar E; Joore J; Buijnink J; Carreri A; Forzani C; Lorkovic ZJ; Barta A; Lecourieux D; Verhounig A; Jonak C; Hirt H J Proteome Res; 2008 Jun; 7(6):2458-70. PubMed ID: 18433157 [TBL] [Abstract][Full Text] [Related]
4. Identification of novel PAMP-triggered phosphorylation and dephosphorylation events in Arabidopsis thaliana by quantitative phosphoproteomic analysis. Rayapuram N; Bonhomme L; Bigeard J; Haddadou K; Przybylski C; Hirt H; Pflieger D J Proteome Res; 2014 Apr; 13(4):2137-51. PubMed ID: 24601666 [TBL] [Abstract][Full Text] [Related]
5. Phosphoproteomic analysis of chromoplasts from sweet orange during fruit ripening. Zeng Y; Pan Z; Wang L; Ding Y; Xu Q; Xiao S; Deng X Physiol Plant; 2014 Feb; 150(2):252-70. PubMed ID: 23786612 [TBL] [Abstract][Full Text] [Related]
6. Phosphoproteome analysis reveals new drought response and defense mechanisms of seedling leaves in bread wheat (Triticum aestivum L.). Zhang M; Lv D; Ge P; Bian Y; Chen G; Zhu G; Li X; Yan Y J Proteomics; 2014 Sep; 109():290-308. PubMed ID: 25065648 [TBL] [Abstract][Full Text] [Related]
7. Comprehensive phosphoproteome analysis of INS-1 pancreatic β-cells using various digestion strategies coupled with liquid chromatography-tandem mass spectrometry. Han D; Moon S; Kim Y; Ho WK; Kim K; Kang Y; Jun H; Kim Y J Proteome Res; 2012 Apr; 11(4):2206-23. PubMed ID: 22276854 [TBL] [Abstract][Full Text] [Related]
8. The chloroplast kinase network: new insights from large-scale phosphoproteome profiling. Baginsky S; Gruissem W Mol Plant; 2009 Nov; 2(6):1141-53. PubMed ID: 19995723 [TBL] [Abstract][Full Text] [Related]
9. Comparative analysis of salt-responsive phosphoproteins in maize leaves using Ti(4+)--IMAC enrichment and ESI-Q-TOF MS. Hu Y; Guo S; Li X; Ren X Electrophoresis; 2013 Feb; 34(4):485-92. PubMed ID: 23172588 [TBL] [Abstract][Full Text] [Related]
10. iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways of wheat seedling growth under hydrogen peroxide stress. Ge P; Hao P; Cao M; Guo G; Lv D; Subburaj S; Li X; Yan X; Xiao J; Ma W; Yan Y Proteomics; 2013 Oct; 13(20):3046-58. PubMed ID: 23929510 [TBL] [Abstract][Full Text] [Related]
11. iTRAQ-based quantitative proteome and phosphoprotein characterization reveals the central metabolism changes involved in wheat grain development. Ma C; Zhou J; Chen G; Bian Y; Lv D; Li X; Wang Z; Yan Y BMC Genomics; 2014 Nov; 15(1):1029. PubMed ID: 25427527 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the phosphoproteome of mature Arabidopsis pollen. Mayank P; Grossman J; Wuest S; Boisson-Dernier A; Roschitzki B; Nanni P; Nühse T; Grossniklaus U Plant J; 2012 Oct; 72(1):89-101. PubMed ID: 22631563 [TBL] [Abstract][Full Text] [Related]
13. Global Phosphoproteomic Analysis Reveals the Defense and Response Mechanisms of Liu H; Wang FF; Peng XJ; Huang JH; Shen SH Int J Mol Sci; 2019 Jan; 20(1):. PubMed ID: 30626061 [TBL] [Abstract][Full Text] [Related]
14. Large-scale phosphoproteome analysis in wheat seedling leaves provides evidence for extensive phosphorylation of regulatory proteins during CWMV infection. Chen L; Yang J; Hu H; Jiang Y; Feng L; Liu J; Zhong K; Liu P; Ma Y; Chen M; Yang J BMC Plant Biol; 2023 Nov; 23(1):532. PubMed ID: 37914991 [TBL] [Abstract][Full Text] [Related]
15. Proteomic and phosphoproteomic analyses reveal extensive phosphorylation of regulatory proteins in developing rice anthers. Ye J; Zhang Z; Long H; Zhang Z; Hong Y; Zhang X; You C; Liang W; Ma H; Lu P Plant J; 2015 Nov; 84(3):527-44. PubMed ID: 26360816 [TBL] [Abstract][Full Text] [Related]
16. Identification of major ERK-related phosphorylation sites in Gab1. Lehr S; Kotzka J; Avci H; Sickmann A; Meyer HE; Herkner A; Muller-Wieland D Biochemistry; 2004 Sep; 43(38):12133-40. PubMed ID: 15379552 [TBL] [Abstract][Full Text] [Related]
17. Phosphoproteome profiling of human skin fibroblast cells in response to low- and high-dose irradiation. Yang F; Stenoien DL; Strittmatter EF; Wang J; Ding L; Lipton MS; Monroe ME; Nicora CD; Gristenko MA; Tang K; Fang R; Adkins JN; Camp DG; Chen DJ; Smith RD J Proteome Res; 2006 May; 5(5):1252-60. PubMed ID: 16674116 [TBL] [Abstract][Full Text] [Related]
18. Phosphoproteomic analysis provides novel insights into stress responses in Phaeodactylum tricornutum, a model diatom. Chen Z; Yang MK; Li CY; Wang Y; Zhang J; Wang DB; Zhang XE; Ge F J Proteome Res; 2014 May; 13(5):2511-23. PubMed ID: 24712722 [TBL] [Abstract][Full Text] [Related]
19. Analysis of the subcellular phosphoproteome using a novel phosphoproteomic reactor. Zhou H; Elisma F; Denis NJ; Wright TG; Tian R; Zhou H; Hou W; Zou H; Figeys D J Proteome Res; 2010 Mar; 9(3):1279-88. PubMed ID: 20067319 [TBL] [Abstract][Full Text] [Related]
20. Quantitative phospho-proteomic profiling of hepatocyte growth factor (HGF)-MET signaling in colorectal cancer. Organ SL; Tong J; Taylor P; St-Germain JR; Navab R; Moran MF; Tsao MS J Proteome Res; 2011 Jul; 10(7):3200-11. PubMed ID: 21609022 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]