These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
399 related articles for article (PubMed ID: 24679076)
21. Proteome and phosphoproteome characterization reveals new response and defense mechanisms of Brachypodium distachyon leaves under salt stress. Lv DW; Subburaj S; Cao M; Yan X; Li X; Appels R; Sun DF; Ma W; Yan YM Mol Cell Proteomics; 2014 Feb; 13(2):632-52. PubMed ID: 24335353 [TBL] [Abstract][Full Text] [Related]
22. Parallel proteomic and phosphoproteomic analyses of successive stages of maize leaf development. Facette MR; Shen Z; Björnsdóttir FR; Briggs SP; Smith LG Plant Cell; 2013 Aug; 25(8):2798-812. PubMed ID: 23933881 [TBL] [Abstract][Full Text] [Related]
23. Comprehensive Phosphoproteomic Analysis of Pepper Fruit Development Provides Insight into Plant Signaling Transduction. Liu Z; Lv J; Liu Y; Wang J; Zhang Z; Chen W; Song J; Yang B; Tan F; Zou X; Ou L Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32183026 [TBL] [Abstract][Full Text] [Related]
24. Mechanisms of Soybean Roots' Tolerances to Salinity Revealed by Proteomic and Phosphoproteomic Comparisons Between Two Cultivars. Pi E; Qu L; Hu J; Huang Y; Qiu L; Lu H; Jiang B; Liu C; Peng T; Zhao Y; Wang H; Tsai SN; Ngai S; Du L Mol Cell Proteomics; 2016 Jan; 15(1):266-88. PubMed ID: 26407991 [TBL] [Abstract][Full Text] [Related]
25. A phyloproteomic characterization of in vitro autophosphorylation in calcium-dependent protein kinases. Hegeman AD; Rodriguez M; Han BW; Uno Y; Phillips GN; Hrabak EM; Cushman JC; Harper JF; Harmon AC; Sussman MR Proteomics; 2006 Jun; 6(12):3649-64. PubMed ID: 16758442 [TBL] [Abstract][Full Text] [Related]
26. Quantitative phosphoproteomics analysis of nitric oxide-responsive phosphoproteins in cotton leaf. Fan S; Meng Y; Song M; Pang C; Wei H; Liu J; Zhan X; Lan J; Feng C; Zhang S; Yu S PLoS One; 2014; 9(4):e94261. PubMed ID: 24714030 [TBL] [Abstract][Full Text] [Related]
27. Identification of phosphoproteins in Arabidopsis thaliana leaves using polyethylene glycol fractionation, immobilized metal-ion affinity chromatography, two-dimensional gel electrophoresis and mass spectrometry. Aryal UK; Krochko JE; Ross AR J Proteome Res; 2012 Jan; 11(1):425-37. PubMed ID: 22092075 [TBL] [Abstract][Full Text] [Related]
28. Global analysis of protein phosphorylation networks in insulin signaling by sequential enrichment of phosphoproteins and phosphopeptides. Fedjaev M; Parmar A; Xu Y; Vyetrogon K; Difalco MR; Ashmarina M; Nifant'ev I; Posner BI; Pshezhetsky AV Mol Biosyst; 2012 Apr; 8(5):1461-71. PubMed ID: 22362066 [TBL] [Abstract][Full Text] [Related]
29. The proteome and phosphoproteome of maize pollen uncovers fertility candidate proteins. Chao Q; Gao ZF; Wang YF; Li Z; Huang XH; Wang YC; Mei YC; Zhao BG; Li L; Jiang YB; Wang BC Plant Mol Biol; 2016 Jun; 91(3):287-304. PubMed ID: 26969016 [TBL] [Abstract][Full Text] [Related]
30. Close proximity of phosphorylation sites to ligand in the phosphoproteome of the extreme thermophile Thermus thermophilus HB8. Takahata Y; Inoue M; Kim K; Iio Y; Miyamoto M; Masui R; Ishihama Y; Kuramitsu S Proteomics; 2012 May; 12(9):1414-30. PubMed ID: 22589190 [TBL] [Abstract][Full Text] [Related]
31. The phosphoproteome of the adenovirus type 2 virion. Bergström Lind S; Artemenko KA; Elfineh L; Zhao Y; Bergquist J; Pettersson U Virology; 2012 Nov; 433(1):253-61. PubMed ID: 22939182 [TBL] [Abstract][Full Text] [Related]
32. Large-scale comparative phosphoprotein analysis of maize seedling leaves during greening. Ning DL; Liu KH; Liu CC; Liu JW; Qian CR; Yu Y; Wang YF; Wang YC; Wang BC Planta; 2016 Feb; 243(2):501-17. PubMed ID: 26497871 [TBL] [Abstract][Full Text] [Related]
33. Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways. Kosako H; Nagano K Expert Rev Proteomics; 2011 Feb; 8(1):81-94. PubMed ID: 21329429 [TBL] [Abstract][Full Text] [Related]
34. Phosphoproteomic investigation of a solvent producing bacterium Clostridium acetobutylicum. Bai X; Ji Z Appl Microbiol Biotechnol; 2012 Jul; 95(1):201-11. PubMed ID: 22627760 [TBL] [Abstract][Full Text] [Related]
35. Quantitative analysis of changes in the phosphoproteome of maize induced by the plant hormone salicylic acid. Wu L; Hu X; Wang S; Tian L; Pang Y; Han Z; Wu L; Chen Y Sci Rep; 2015 Dec; 5():18155. PubMed ID: 26659305 [TBL] [Abstract][Full Text] [Related]
36. Comparative physiological and proteomic response to abrupt low temperature stress between two winter wheat cultivars differing in low temperature tolerance. Xu J; Li Y; Sun J; Du L; Zhang Y; Yu Q; Liu X Plant Biol (Stuttg); 2013 Mar; 15(2):292-303. PubMed ID: 22963252 [TBL] [Abstract][Full Text] [Related]
37. Identification of Leishmania-specific protein phosphorylation sites by LC-ESI-MS/MS and comparative genomics analyses. Hem S; Gherardini PF; Osorio y Fortéa J; Hourdel V; Morales MA; Watanabe R; Pescher P; Kuzyk MA; Smith D; Borchers CH; Zilberstein D; Helmer-Citterich M; Namane A; Späth GF Proteomics; 2010 Nov; 10(21):3868-83. PubMed ID: 20960452 [TBL] [Abstract][Full Text] [Related]
38. Investigating the impact of elevated levels of ozone on tropical wheat using integrated phenotypical, physiological, biochemical, and proteomics approaches. Sarkar A; Rakwal R; Bhushan Agrawal S; Shibato J; Ogawa Y; Yoshida Y; Kumar Agrawal G; Agrawal M J Proteome Res; 2010 Sep; 9(9):4565-84. PubMed ID: 20701290 [TBL] [Abstract][Full Text] [Related]
39. Targeted quantitative phosphoproteomics approach for the detection of phospho-tyrosine signaling in plants. Mithoe SC; Boersema PJ; Berke L; Snel B; Heck AJ; Menke FL J Proteome Res; 2012 Jan; 11(1):438-48. PubMed ID: 22074104 [TBL] [Abstract][Full Text] [Related]