BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 24679165)

  • 1. Novel trends for use of microbial tannases.
    Zhang S; Gao X; He L; Qiu Y; Zhu H; Cao Y
    Prep Biochem Biotechnol; 2015; 45(3):221-32. PubMed ID: 24679165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in industrial application of tannases: a review.
    Beniwal V; Kumar A; Sharma J; Chhokar V
    Recent Pat Biotechnol; 2013 Dec; 7(3):228-33. PubMed ID: 24182319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of gallotannins and ellagitannins.
    Li M; Kai Y; Qiang H; Dongying J
    J Basic Microbiol; 2006; 46(1):68-84. PubMed ID: 16463321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent trends and advancements in microbial tannase-catalyzed biotransformation of tannins: a review.
    Dhiman S; Mukherjee G; Singh AK
    Int Microbiol; 2018 Dec; 21(4):175-195. PubMed ID: 30810902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Propyl gallate synthesis using acidophilic tannase and simultaneous production of tannase and gallic acid by marine Aspergillus awamori BTMFW032.
    Beena PS; Basheer SM; Bhat SG; Bahkali AH; Chandrasekaran M
    Appl Biochem Biotechnol; 2011 Jul; 164(5):612-28. PubMed ID: 21279470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial tannases: classification and biochemical properties.
    de Las Rivas B; Rodríguez H; Anguita J; Muñoz R
    Appl Microbiol Biotechnol; 2019 Jan; 103(2):603-623. PubMed ID: 30460533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gallic acid production under anaerobic submerged fermentation by two bacilli strains.
    Aguilar-Zárate P; Cruz MA; Montañez J; Rodríguez-Herrera R; Wong-Paz JE; Belmares RE; Aguilar CN
    Microb Cell Fact; 2015 Dec; 14():209. PubMed ID: 26715179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-production of gallic acid and a novel cell-associated tannase by a pigment-producing yeast, Sporidiobolus ruineniae A45.2.
    Kanpiengjai A; Khanongnuch C; Lumyong S; Haltrich D; Nguyen TH; Kittibunchakul S
    Microb Cell Fact; 2020 Apr; 19(1):95. PubMed ID: 32334591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comprehensive review on tannase: Microbes associated production of tannase exploiting tannin rich agro-industrial wastes with special reference to its potential environmental and industrial applications.
    Lekshmi R; Arif Nisha S; Thirumalai Vasan P; Kaleeswaran B
    Environ Res; 2021 Oct; 201():111625. PubMed ID: 34224709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation of tannic acid by Citrobacter freundii isolated from a tannery effluent.
    Kumar RA; Gunasekaran P; Lakshmanan M
    J Basic Microbiol; 1999; 39(3):161-8. PubMed ID: 10427737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a Robust and pH-Stable Tannase from Mangrove-Derived Yeast
    Pan J; Wang NN; Yin XJ; Liang XL; Wang ZP
    Mar Drugs; 2020 Oct; 18(11):. PubMed ID: 33143376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial tannases: advances and perspectives.
    Aguilar CN; Rodríguez R; Gutiérrez-Sánchez G; Augur C; Favela-Torres E; Prado-Barragan LA; Ramírez-Coronel A; Contreras-Esquivel JC
    Appl Microbiol Biotechnol; 2007 Aug; 76(1):47-59. PubMed ID: 17530245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential activities of fungi-derived tannases on biotransformation and substrate inhibition in green tea extract.
    Baik JH; Suh HJ; Cho SY; Park Y; Choi HS
    J Biosci Bioeng; 2014 Nov; 118(5):546-53. PubMed ID: 24856576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of three tannases cloned from closely related lactobacillus species: L. Plantarum, L. Paraplantarum, and L. Pentosus.
    Ueda S; Nomoto R; Yoshida K; Osawa R
    BMC Microbiol; 2014 Apr; 14():87. PubMed ID: 24708557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural diversity and substrate preferences of three tannase enzymes encoded by the anaerobic bacterium Clostridium butyricum.
    Ristinmaa AS; Coleman T; Cesar L; Langborg Weinmann A; Mazurkewich S; Brändén G; Hasani M; Larsbrink J
    J Biol Chem; 2022 Apr; 298(4):101758. PubMed ID: 35202648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From degrader to producer: reversing the gallic acid metabolism of Pseudomonas putida KT2440.
    Dias FMS; Pantoja RK; Gomez JGC; Silva LF
    Int Microbiol; 2023 May; 26(2):243-255. PubMed ID: 36357545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-production of tannase and gallic acid by a novel Penicillium rolfsii (CCMB 714).
    Andrade PML; Baptista L; Britto JS; Uetenabaro APT; Costa AMD
    Prep Biochem Biotechnol; 2018; 48(8):700-706. PubMed ID: 30040534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a highly active tannase enzyme from the oral pathogen Fusobacterium nucleatum subsp. polymorphum.
    Tomás-Cortázar J; Plaza-Vinuesa L; de Las Rivas B; Lavín JL; Barriales D; Abecia L; Mancheño JM; Aransay AM; Muñoz R; Anguita J; Rodríguez H
    Microb Cell Fact; 2018 Feb; 17(1):33. PubMed ID: 29482557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of fungal tannase from Aspergillus niger.
    Dong L; McKinstry WJ; Pan L; Newman J; Ren B
    Acta Crystallogr D Struct Biol; 2021 Feb; 77(Pt 2):267-277. PubMed ID: 33559614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production and physicochemical properties of recombinant Lactobacillus plantarum tannase.
    Curiel JA; Rodríguez H; Acebrón I; Mancheño JM; De Las Rivas B; Muñoz R
    J Agric Food Chem; 2009 Jul; 57(14):6224-30. PubMed ID: 19601665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.