BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 24679249)

  • 1. Intrinsic debromination potential of polybrominated diphenyl ethers in different sediment slurries.
    Zhu H; Wang Y; Wang X; Luan T; Tam NF
    Environ Sci Technol; 2014 May; 48(9):4724-31. PubMed ID: 24679249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of BDE-47 in mangrove sediments under alternating anaerobic-aerobic conditions.
    Pan Y; Chen J; Zhou H; Cheung SG; Tam NFY
    J Hazard Mater; 2019 Oct; 378():120709. PubMed ID: 31203118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reductive debromination of polybrominated diphenyl ethers in anaerobic sediment and a biomimetic system.
    Tokarz JA; Ahn MY; Leng J; Filley TR; Nies L
    Environ Sci Technol; 2008 Feb; 42(4):1157-64. PubMed ID: 18351087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reductive debromination of polybrominated diphenyl ethers by anaerobic bacteria from soils and sediments.
    Lee LK; He J
    Appl Environ Microbiol; 2010 Feb; 76(3):794-802. PubMed ID: 20008168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insights into the anaerobic microbial degradation of decabrominated diphenyl ether (BDE-209) in coastal marine sediments.
    Zhu X; Zhong Y; Wang H; Li D; Deng Y; Peng P
    Environ Pollut; 2019 Dec; 255(Pt 2):113151. PubMed ID: 31550656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution and accumulation of polybrominated diphenyl ethers (PBDEs) in Hong Kong mangrove sediments.
    Zhu H; Wang Y; Wang X; Luan T; Tam NF
    Sci Total Environ; 2014 Jan; 468-469():130-9. PubMed ID: 24012900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial communities associated with anaerobic debromination of decabromodiphenyl ether from mangrove sediment.
    Yang CW; Lee CC; Ku H; Chang BV
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5391-5403. PubMed ID: 28013469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polybrominated diphenyl ethers (PBDEs) in the riverine and marine sediments of the Laizhou Bay area, North China.
    Pan X; Tang J; Li J; Zhong G; Chen Y; Zhang G
    J Environ Monit; 2011 Apr; 13(4):886-93. PubMed ID: 21423921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochar accelerates microbial reductive debromination of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in anaerobic mangrove sediments.
    Chen J; Wang C; Pan Y; Farzana SS; Tam NF
    J Hazard Mater; 2018 Jan; 341():177-186. PubMed ID: 28777963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of Hydroxylated Polybrominated Diphenyl Ethers (OH-BDEs), Triclosan, and Related Compounds in Freshwater and Coastal Systems.
    Kerrigan JF; Engstrom DR; Yee D; Sueper C; Erickson PR; Grandbois M; McNeill K; Arnold WA
    PLoS One; 2015; 10(10):e0138805. PubMed ID: 26466159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial bioavailability of 2,2',4,4'-Tetrabromodiphenyl ether (BDE-47) in natural sediments from major rivers of China.
    Zhu B; Xia X; Wu S; Lu X; Yin X
    Chemosphere; 2016 Jun; 153():386-93. PubMed ID: 27031801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microcosm study on fate of polybrominated diphenyl ethers (PBDEs) in contaminated mangrove sediment.
    Zhu H; Wang Y; Tam NF
    J Hazard Mater; 2014 Jan; 265():61-8. PubMed ID: 24333715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid debromination of polybrominated diphenyl ethers (PBDEs) by zero valent metal and bimetals: Mechanisms and pathways assisted by density function theory calculation.
    Wang R; Tang T; Lu G; Huang K; Yin H; Lin Z; Wu F; Dang Z
    Environ Pollut; 2018 Sep; 240():745-753. PubMed ID: 29778810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Occurrence and levels of polybrominated diphenyl ethers in surface sediments from the Yellow River Estuary, China.
    Yuan Z; Liu G; Lam MHW; Liu H; Da C
    Environ Pollut; 2016 May; 212():147-154. PubMed ID: 26845362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photolytic debromination of decabromodiphenyl ether (BDE 209).
    Söderstrom G; Sellström U; de Wit CA; Tysklind M
    Environ Sci Technol; 2004 Jan; 38(1):127-32. PubMed ID: 14740727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in microbial community during removal of BDE-153 in four types of aquatic sediments.
    Pan Y; Chen J; Zhou H; Tam NFY
    Sci Total Environ; 2018 Feb; 613-614():644-652. PubMed ID: 28934686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of carbonaceous materials on microbial bioavailability of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in sediments.
    Zhu B; Wu S; Xia X; Lu X; Zhang X; Xia N; Liu T
    J Hazard Mater; 2016 Jul; 312():216-223. PubMed ID: 27037476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioaccumulation kinetics of polybrominated diphenyl ethers from estuarine sediments to the marine polychaete, Nereis virens.
    Klosterhaus SL; Dreis E; Baker JE
    Environ Toxicol Chem; 2011 May; 30(5):1204-12. PubMed ID: 21337608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of decabromodiphenyl ether (BDE-209) in microcosms mimicking sediment environment subjected to comparative bioremediation strategies.
    Demirtepe H; Imamoglu I
    J Environ Manage; 2019 Mar; 233():120-130. PubMed ID: 30576959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversity and Dynamics of Microbial Community Structure in Different Mangrove, Marine and Freshwater Sediments During Anaerobic Debromination of PBDEs.
    Wang YF; Zhu HW; Wang Y; Zhang XL; Tam NFY
    Front Microbiol; 2018; 9():952. PubMed ID: 29867858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.