BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 24679783)

  • 1. Tannin analysis of chestnut bark samples (Castanea sativa Mill.) by HPLC-DAD-MS.
    Comandini P; Lerma-García MJ; Simó-Alfonso EF; Toschi TG
    Food Chem; 2014 Aug; 157():290-5. PubMed ID: 24679783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenolic compounds in chestnut (Castanea sativa Mill.) heartwood. Effect of toasting at cooperage.
    Sanz M; Cadahía E; Esteruelas E; Muñoz AM; Fernández de Simón B; Hernández T; Estrella I
    J Agric Food Chem; 2010 Sep; 58(17):9631-40. PubMed ID: 20687564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methodology optimization for the analysis of phenolic compounds in chestnut (
    Fuente-Maqueda F; Rodríguez A; Majada J; Fernández B; Feito I
    Food Sci Technol Int; 2020 Sep; 26(6):520-534. PubMed ID: 32223433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopy analysis of phenolic and sugar patterns in a food grade chestnut tannin.
    Ricci A; Lagel MC; Parpinello GP; Pizzi A; Kilmartin PA; Versari A
    Food Chem; 2016 Jul; 203():425-429. PubMed ID: 26948634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrolyzable Tannins from Sweet Chestnut Fractions Obtained by a Sustainable and Eco-friendly Industrial Process.
    Campo M; Pinelli P; Romani A
    Nat Prod Commun; 2016 Mar; 11(3):409-15. PubMed ID: 27169194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subcritical Water Extraction of Chestnut Bark and Optimization of Process Parameters.
    Gagić T; Knez Ž; Škerget M
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32560152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of tannin from chestnut (Castanea vesca).
    Krisper P; Tisler V; Skubic V; Rupnik I; Kobal S
    Basic Life Sci; 1992; 59():1013-9. PubMed ID: 1417692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive analysis of chestnut tannins by reversed phase and hydrophilic interaction chromatography coupled to ion mobility and high resolution mass spectrometry.
    Venter P; Causon T; Pasch H; de Villiers A
    Anal Chim Acta; 2019 Dec; 1088():150-167. PubMed ID: 31623711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chestnut shells (Italian cultivar "Marrone di Roccadaspide" PGI): Antioxidant activity and chemical investigation with in depth LC-HRMS/MS
    Cerulli A; Napolitano A; Masullo M; Hošek J; Pizza C; Piacente S
    Food Res Int; 2020 Mar; 129():108787. PubMed ID: 32036927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Untargeted Characterization of Chestnut (
    Cacciola NA; Cerrato A; Capriotti AL; Cavaliere C; D'Apolito M; Montone CM; Piovesana S; Squillaci G; Peluso G; Laganà A
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32545546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mass spectrometry and
    Cardullo N; Muccilli V; Saletti R; Giovando S; Tringali C
    Food Chem; 2018 Dec; 268():585-593. PubMed ID: 30064801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery of bioactive molecules from chestnut (Castanea sativa Mill.) by-products through extraction by different solvents.
    Vella FM; Laratta B; La Cara F; Morana A
    Nat Prod Res; 2018 May; 32(9):1022-1032. PubMed ID: 28920445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability and oxidation products of hydrolysable tannins in basic conditions detected by HPLC/DAD-ESI/QTOF/MS.
    Tuominen A; Sundman T
    Phytochem Anal; 2013; 24(5):424-35. PubMed ID: 23798544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sugars profiles of different chestnut (Castanea sativa Mill.) and almond (Prunus dulcis) cultivars by HPLC-RI.
    Barreira JC; Pereira JA; Oliveira MB; Ferreira IC
    Plant Foods Hum Nutr; 2010 Mar; 65(1):38-43. PubMed ID: 20033298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic Profiling of Chestnut Shell (
    Nam M; Yu JM; Park YR; Kim YS; Kim JH; Kim MS
    Biomolecules; 2022 Dec; 12(12):. PubMed ID: 36551228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and Quantification of the Major Phenolic Constituents in
    Medic A; Kunc P; Zamljen T; Hudina M; Veberic R; Solar A
    Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37685892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of gallotannins and ellagitannins in aged wine spirits: A new perspective using alternative ageing technology and high-resolution mass spectrometry.
    Fernandes TA; Antunes AMM; Caldeira I; Anjos O; de Freitas V; Fargeton L; Boissier B; Catarino S; Canas S
    Food Chem; 2022 Jul; 382():132322. PubMed ID: 35158268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Valorization of solid wastes from chestnut industry processing: Extraction and optimization of polyphenols, tannins and ellagitannins and its potential for adhesives, cosmetic and pharmaceutical industry.
    Aires A; Carvalho R; Saavedra MJ
    Waste Manag; 2016 Feb; 48():457-464. PubMed ID: 26626811
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Formato M; Vastolo A; Piccolella S; Calabrò S; Cutrignelli MI; Zidorn C; Pacifico S
    Molecules; 2022 Dec; 27(24):. PubMed ID: 36557796
    [No Abstract]   [Full Text] [Related]  

  • 20. Phenolics from Castanea sativa leaves and their effects on UVB-induced damage.
    Cerulli A; Masullo M; Mari A; Balato A; Filosa R; Lembo S; Napolitano A; Piacente S
    Nat Prod Res; 2018 May; 32(10):1170-1175. PubMed ID: 28539059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.