These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 24679800)

  • 1. Application of a voltammetric electronic tongue and near infrared spectroscopy for a rapid umami taste assessment.
    Bagnasco L; Cosulich ME; Speranza G; Medini L; Oliveri P; Lanteri S
    Food Chem; 2014 Aug; 157():421-8. PubMed ID: 24679800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrimination between washed Arabica, natural Arabica and Robusta coffees by using near infrared spectroscopy, electronic nose and electronic tongue analysis.
    Buratti S; Sinelli N; Bertone E; Venturello A; Casiraghi E; Geobaldo F
    J Sci Food Agric; 2015 Aug; 95(11):2192-200. PubMed ID: 25258213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of umami taste and their contributing compounds in edible fungi based on electronic tongue, sensory evaluation, and chemical analysis.
    Feng T; Cai W; Chen D; Song S; Yao L; Sun M; Wang H; Yu C; Liu Q; Dang Y
    J Food Sci; 2023 Dec; 88(12):4974-4987. PubMed ID: 37799107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of umami taste in mushroom extracts by chemical analysis, sensory evaluation, and an electronic tongue system.
    Phat C; Moon B; Lee C
    Food Chem; 2016 Feb; 192():1068-77. PubMed ID: 26304449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of structurally related commercial contrast media by near infrared spectroscopy.
    Yip WL; Soosainather TC; Dyrstad K; Sande SA
    J Pharm Biomed Anal; 2014 Mar; 90():148-60. PubMed ID: 24374816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic tongue-based discrimination of Korean rice wines (makgeolli) including prediction of sensory evaluation and instrumental measurements.
    Kang BS; Lee JE; Park HJ
    Food Chem; 2014 May; 151():317-23. PubMed ID: 24423539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation of sensory bitterness in dairy protein hydrolysates: Comparison of prediction models built using sensory, chromatographic and electronic tongue data.
    Newman J; Egan T; Harbourne N; O'Riordan D; Jacquier JC; O'Sullivan M
    Talanta; 2014 Aug; 126():46-53. PubMed ID: 24881533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-infrared spectroscopy quantitative determination of pefloxacin mesylate concentration in pharmaceuticals by using partial least squares and principal component regression multivariate calibration.
    Xie Y; Song Y; Zhang Y; Zhao B
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 May; 75(5):1535-9. PubMed ID: 20299275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast and robust discrimination of almonds (Prunus amygdalus) with respect to their bitterness by using near infrared and partial least squares-discriminant analysis.
    Borràs E; Amigo JM; van den Berg F; Boqué R; Busto O
    Food Chem; 2014 Jun; 153():15-9. PubMed ID: 24491694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of parameters related to grape ripening by multivariate calibration of voltammetric signals acquired by an electronic tongue.
    Pigani L; Vasile Simone G; Foca G; Ulrici A; Masino F; Cubillana-Aguilera L; Calvini R; Seeber R
    Talanta; 2018 Feb; 178():178-187. PubMed ID: 29136810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of performance of partial least squares regression, secured principal component regression, and modified secured principal component regression for determination of human serum albumin, gamma-globulin and glucose in buffer solutions and in vivo blood glucose quantification by near-infrared spectroscopy.
    Li BY; Kasemsumran S; Hu Y; Liang YZ; Ozaki Y
    Anal Bioanal Chem; 2007 Jan; 387(2):603-11. PubMed ID: 17171339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discriminating aging and protein-to-fat ratio in Cheddar cheese using sensory analysis and a potentiometric electronic tongue.
    Lipkowitz JB; Ross CF; Diako C; Smith DM
    J Dairy Sci; 2018 Mar; 101(3):1990-2004. PubMed ID: 29331463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lubricant-Sensitivity Assessment of SPRESS
    Dave VS; Popielarczyk M; Boyce H; Al-Achi A; Ike-Amaechi E; Hoag SW; Haware RV
    J Pharm Sci; 2017 Feb; 106(2):537-545. PubMed ID: 27832838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid Characterization of Black Tea Taste Quality Using Miniature NIR Spectroscopy and Electronic Tongue Sensors.
    Ren G; Zhang X; Wu R; Yin L; Hu W; Zhang Z
    Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of eight kinds of flavor enhancer of umami taste by an electronic tongue.
    Wang K; Zhuang H; Bing F; Chen D; Feng T; Xu Z
    Food Sci Nutr; 2021 Apr; 9(4):2095-2104. PubMed ID: 33841827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Instrumental measurement of beer taste attributes using an electronic tongue.
    Rudnitskaya A; Polshin E; Kirsanov D; Lammertyn J; Nicolai B; Saison D; Delvaux FR; Delvaux F; Legin A
    Anal Chim Acta; 2009 Jul; 646(1-2):111-8. PubMed ID: 19523563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New PLS analysis approach to wine volatile compounds characterization by near infrared spectroscopy (NIR).
    Genisheva Z; Quintelas C; Mesquita DP; Ferreira EC; Oliveira JM; Amaral AL
    Food Chem; 2018 Apr; 246():172-178. PubMed ID: 29291836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated strategy of marker ingredients searching and near infrared spectroscopy rapid evaluation for the quality control of Chinese eaglewood.
    Ding G; Nie Y; Hou Y; Liu Z; Liu A; Peng J; Jiang M; Bai G
    J Pharm Biomed Anal; 2015 Oct; 114():462-70. PubMed ID: 26133105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on classification of soy sauce by electronic tongue technique combined with artificial neural network.
    Ou-Yang Q; Zhao JW; Chen QS; Lin H; Huang XY
    J Food Sci; 2011; 76(9):S523-7. PubMed ID: 22416724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid quantification of honey adulteration by visible-near infrared spectroscopy combined with chemometrics.
    Ferreiro-González M; Espada-Bellido E; Guillén-Cueto L; Palma M; Barroso CG; Barbero GF
    Talanta; 2018 Oct; 188():288-292. PubMed ID: 30029378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.