These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 24680504)

  • 1. Chemical and enzymatic methodologies for the synthesis of enantiomerically pure glyceraldehyde 3-phosphates.
    Gauss D; Schoenenberger B; Wohlgemuth R
    Carbohydr Res; 2014 May; 389():18-24. PubMed ID: 24680504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioreaction Engineering Leading to Efficient Synthesis of L-Glyceraldehyd-3-Phosphate.
    Molla GS; Kinfu BM; Chow J; Streit W; Wohlgemuth R; Liese A
    Biotechnol J; 2017 Mar; 12(3):. PubMed ID: 27992107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism of L-glyceraldehyde 3-phosphate in Escherichia coli.
    Kalyananda MK; Engel R; Tropp BE
    J Bacteriol; 1987 Jun; 169(6):2488-93. PubMed ID: 3294792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The stereochemical course of D-glyceraldehyde-induced ATPase activity of glycerokinase from Escherichia coli.
    Bethell RC; Lowe G
    Eur J Biochem; 1988 Jun; 174(2):387-9. PubMed ID: 2838275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-pot synthesis of L-Fructose using coupled multienzyme systems based on rhamnulose-1-phosphate aldolase.
    Franke D; Machajewski T; Hsu CC; Wong CH
    J Org Chem; 2003 Aug; 68(17):6828-31. PubMed ID: 12919060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glyceraldehyde-3-phosphate, a glycolytic intermediate, plays a key role in controlling cell fate via inhibition of caspase activity.
    Jang M; Kang HJ; Lee SY; Chung SJ; Kang S; Chi SW; Cho S; Lee SC; Lee CK; Park BC; Bae KH; Park SG
    Mol Cells; 2009 Dec; 28(6):559-63. PubMed ID: 19937139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A metabolic bypass of the triosephosphate isomerase reaction.
    Desai KK; Miller BG
    Biochemistry; 2008 Aug; 47(31):7983-5. PubMed ID: 18620424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal.
    Phillips SA; Thornalley PJ
    Eur J Biochem; 1993 Feb; 212(1):101-5. PubMed ID: 8444148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on the reactions between daptomycin and glyceraldehyde.
    Muangsiri W; Kearney WR; Teesch LM; Kirsch LE
    Int J Pharm; 2005 Jan; 289(1-2):133-50. PubMed ID: 15652206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhodobacter capsulatus 1-deoxy-D-xylulose 5-phosphate synthase: steady-state kinetics and substrate binding.
    Eubanks LM; Poulter CD
    Biochemistry; 2003 Feb; 42(4):1140-9. PubMed ID: 12549936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative aspects of the inactivation of fructose 1,6 bisphosphate aldolase by D- and l-glyceraldehyde 3-phosphate.
    Leoncini G; Maresca M; Ronchi S; Bonsignore A
    Ital J Biochem; 1979; 28(3):232-44. PubMed ID: 121996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for the two phosphate binding sites of an analogue of the thioacyl intermediate for the Trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase-catalyzed reaction, from its crystal structure.
    Castilho MS; Pavão F; Oliva G; Ladame S; Willson M; Périé J
    Biochemistry; 2003 Jun; 42(23):7143-51. PubMed ID: 12795610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical and genetic characterization of the three metabolic routes in Thermococcus kodakarensis linking glyceraldehyde 3-phosphate and 3-phosphoglycerate.
    Matsubara K; Yokooji Y; Atomi H; Imanaka T
    Mol Microbiol; 2011 Sep; 81(5):1300-12. PubMed ID: 21736643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Basis of allosteric regulation and substrate specificity of the non-phosphorylating glyceraldehyde 3-Phosphate dehydrogenase from Thermoproteus tenax.
    Lorentzen E; Hensel R; Knura T; Ahmed H; Pohl E
    J Mol Biol; 2004 Aug; 341(3):815-28. PubMed ID: 15288789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic properties of NAD-dependent glyceraldehyde-3-phosphate dehydrogenase from the host fraction of soybean root nodules.
    Copeland L; Zammit A
    Arch Biochem Biophys; 1994 Jul; 312(1):107-13. PubMed ID: 8031116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel D-glyceraldehyde-3-phosphate binding protein, a truncated albumin, with D-glyceraldehyde-3-phosphate dehydrogenase inhibitory property.
    Roy A; Bera S; Patra S; Ray S; Ray M
    IUBMB Life; 2009 Oct; 61(10):995-1000. PubMed ID: 19603513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mouse lacking NAD+-linked glycerol phosphate dehydrogenase has normal pancreatic beta cell function but abnormal metabolite pattern in skeletal muscle.
    MacDonald MJ; Marshall LK
    Arch Biochem Biophys; 2000 Dec; 384(1):143-53. PubMed ID: 11147825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of anaerobic glycolysis in Ehrlich ascites tumour cells.
    Schulz J; Baufeld A; Hofmann E; Rapoport TA; Heinrich R; Rapoport SM
    Acta Biol Med Ger; 1977; 36(10):1379-91. PubMed ID: 28629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Enzymatic synthesis of (5-3H)D-fructose-1,6-bisphosphate, (5-3H)D-fructose-6-phosphate, (5-3H)D-glucose-6-phosphate and (5-3H)D-glucose].
    Hauska G; Kindl H; Hoffmann-Ostenhof O
    Hoppe Seylers Z Physiol Chem; 1967 Oct; 348(10):1273-6. PubMed ID: 4296641
    [No Abstract]   [Full Text] [Related]  

  • 20. Changes in the contents of metabolites and enzyme activities in rice plants responding to Rhizoctonia solani Kuhn infection: activation of glycolysis and connection to phenylpropanoid pathway.
    Mutuku JM; Nose A
    Plant Cell Physiol; 2012 Jun; 53(6):1017-32. PubMed ID: 22492233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.