BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

639 related articles for article (PubMed ID: 24680541)

  • 1. Sensitivity of crop cover to climate variability: insights from two Indian agro-ecoregions.
    Mondal P; Jain M; DeFries RS; Galford GL; Small C
    J Environ Manage; 2015 Jan; 148():21-30. PubMed ID: 24680541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding spatio-temporal variation of vegetation phenology and rainfall seasonality in the monsoon Southeast Asia.
    Suepa T; Qi J; Lawawirojwong S; Messina JP
    Environ Res; 2016 May; 147():621-9. PubMed ID: 26922262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Productivity and phenological responses of natural vegetation to present and future inter-annual climate variability across semi-arid river basins in Chile.
    Glade FE; Miranda MD; Meza FJ; van Leeuwen WJ
    Environ Monit Assess; 2016 Dec; 188(12):676. PubMed ID: 27858259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adapting to climate variability and change: experiences from cereal-based farming in the central rift and Kobo Valleys, Ethiopia.
    Kassie BT; Hengsdijk H; Rötter R; Kahiluoto H; Asseng S; Van Ittersum M
    Environ Manage; 2013 Nov; 52(5):1115-31. PubMed ID: 23943096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are phenological variations in natural teak (Tectona grandis) forests of India governed by rainfall? A remote sensing based investigation.
    Ghosh S; Nandy S; Mohanty S; Subba R; Kushwaha SPS
    Environ Monit Assess; 2020 Jan; 191(Suppl 3):786. PubMed ID: 31989274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advancing the climate data driven crop-modeling studies in the dry areas of Northern Syria and Lebanon: an important first step for assessing impact of future climate.
    Dixit PN; Telleria R
    Sci Total Environ; 2015 Apr; 511():562-75. PubMed ID: 25590537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Downscaled climate change projections with uncertainty assessment over India using a high resolution multi-model approach.
    Kumar P; Wiltshire A; Mathison C; Asharaf S; Ahrens B; Lucas-Picher P; Christensen JH; Gobiet A; Saeed F; Hagemann S; Jacob D
    Sci Total Environ; 2013 Dec; 468-469 Suppl():S18-30. PubMed ID: 23541400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Land Use and Environmental Variability Impacts on the Phenology of Arid Agro-Ecosystems.
    Romo-Leon JR; van Leeuwen WJ; Castellanos-Villegas A
    Environ Manage; 2016 Feb; 57(2):283-97. PubMed ID: 26407556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenological stages of Proso millet (Panicum miliaceum L.) encoded in BBCH scale.
    Ventura F; Vignudelli M; Poggi GM; Negri L; Dinelli G
    Int J Biometeorol; 2020 Jul; 64(7):1167-1181. PubMed ID: 32179985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impacts of climate change on vegetation phenology and net primary productivity in arid Central Asia.
    Wu L; Ma X; Dou X; Zhu J; Zhao C
    Sci Total Environ; 2021 Nov; 796():149055. PubMed ID: 34328878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of regional climate models to the Indian winter monsoon over the western Himalayas.
    Dimri AP; Yasunari T; Wiltshire A; Kumar P; Mathison C; Ridley J; Jacob D
    Sci Total Environ; 2013 Dec; 468-469 Suppl():S36-47. PubMed ID: 23411117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Food productivity trend analysis of Raichur district for the management of agricultural drought.
    Swathandran S; Aslam MA
    Environ Monit Assess; 2016 Jan; 188(1):63. PubMed ID: 26718944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial and seasonal characterization of net primary productivity and climate variables in southeastern China using MODIS data.
    Peng DL; Huang JF; Huete AR; Yang TM; Gao P; Chen YC; Chen H; Li J; Liu ZY
    J Zhejiang Univ Sci B; 2010 Apr; 11(4):275-85. PubMed ID: 20349524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental and socio-economic vulnerability of agricultural sector in Armenia.
    Melkonyan A
    Sci Total Environ; 2014 Aug; 488-489():333-42. PubMed ID: 24836389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Greater phenological sensitivity to temperature on higher Scottish mountains: new insights from remote sensing.
    Chapman DS
    Glob Chang Biol; 2013 Nov; 19(11):3463-71. PubMed ID: 23661383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated crop model and GIS decision support system for assisting agronomic decision making under climate change.
    Kadiyala MD; Nedumaran S; Singh P; S C; Irshad MA; Bantilan MC
    Sci Total Environ; 2015 Jul; 521-522():123-34. PubMed ID: 25829290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observed and predicted precipitation variability across Pakistan with special focus on winter and pre-monsoon precipitation.
    Safdar F; Khokhar MF; Mahmood F; Khan MZA; Arshad M
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):4510-4530. PubMed ID: 35974270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of climate change on crop yield and role of model for achieving food security.
    Kumar M
    Environ Monit Assess; 2016 Aug; 188(8):465. PubMed ID: 27418072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterns of crop cover under future climates.
    Porfirio LL; Newth D; Harman IN; Finnigan JJ; Cai Y
    Ambio; 2017 Apr; 46(3):265-276. PubMed ID: 27663230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh River Basin, Iran, under the impacts of climate change.
    Fereidoon M; Koch M
    Sci Total Environ; 2018 Jul; 630():502-516. PubMed ID: 29486443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.