BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 24680651)

  • 1. Evaluations of a mechanistic hypothesis for the influence of extracellular ions on electroporation due to high-intensity, nanosecond pulsing.
    Sridhara V; Joshi RP
    Biochim Biophys Acta; 2014 Jul; 1838(7):1793-800. PubMed ID: 24680651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A molecular dynamic study of cholesterol rich lipid membranes: comparison of electroporation protocols.
    Casciola M; Bonhenry D; Liberti M; Apollonio F; Tarek M
    Bioelectrochemistry; 2014 Dec; 100():11-7. PubMed ID: 24731593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroporation of heterogeneous lipid membranes.
    Reigada R
    Biochim Biophys Acta; 2014 Mar; 1838(3):814-21. PubMed ID: 24144543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical study of lipid translocation driven by nanoporation due to multiple high-intensity, ultrashort electrical pulses.
    Sridhara V; Joshi RP
    Biochim Biophys Acta; 2014 Mar; 1838(3):902-9. PubMed ID: 24239610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of lipid electropores II: Comparison of continuum-level modeling of pore conductance to molecular dynamics simulations.
    Rems L; Tarek M; Casciola M; Miklavčič D
    Bioelectrochemistry; 2016 Dec; 112():112-24. PubMed ID: 27091314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-consistent simulations of electroporation dynamics in biological cells subjected to ultrashort electrical pulses.
    Joshi RP; Hu Q; Aly R; Schoenbach KH; Hjalmarson HP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 1):011913. PubMed ID: 11461294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The contribution of lipid peroxidation to membrane permeability in electropermeabilization: A molecular dynamics study.
    Rems L; Viano M; Kasimova MA; Miklavčič D; Tarek M
    Bioelectrochemistry; 2019 Feb; 125():46-57. PubMed ID: 30265863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Simulation of Cell Membrane Deformation by Picosecond Intense Electric Pulse.
    Petrishia A; Sasikala M
    J Membr Biol; 2015 Dec; 248(6):1015-20. PubMed ID: 26054382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-fluctuation-induced water-pore formation in ion channel voltage-sensor translocation across a lipid bilayer membrane.
    Rajapaksha SP; Pal N; Zheng D; Lu HP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(5):052719. PubMed ID: 26651735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of dimethyl sulfoxide on lipid membrane electroporation.
    Fernández ML; Reigada R
    J Phys Chem B; 2014 Aug; 118(31):9306-12. PubMed ID: 25035931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electropore Formation in Mechanically Constrained Phospholipid Bilayers.
    Fernández ML; Risk MR; Vernier PT
    J Membr Biol; 2018 Apr; 251(2):237-245. PubMed ID: 29170842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electroporation of Skin Stratum Corneum Lipid Bilayer and Molecular Mechanism of Drug Transport: A Molecular Dynamics Study.
    Gupta R; Rai B
    Langmuir; 2018 May; 34(20):5860-5870. PubMed ID: 29708340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroporation threshold of POPC lipid bilayers with incorporated polyoxyethylene glycol (C12E8).
    Polak A; Velikonja A; Kramar P; Tarek M; Miklavčič D
    J Phys Chem B; 2015 Jan; 119(1):192-200. PubMed ID: 25495217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of siRNA through lipid membranes driven by nanosecond electric pulses: an experimental and computational study.
    Breton M; Delemotte L; Silve A; Mir LM; Tarek M
    J Am Chem Soc; 2012 Aug; 134(34):13938-41. PubMed ID: 22880891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High electrical field effects on cell membranes.
    Pliquett U; Joshi RP; Sridhara V; Schoenbach KH
    Bioelectrochemistry; 2007 May; 70(2):275-82. PubMed ID: 17123870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations of lipid membranes with lateral force: rupture and dynamic properties.
    Xie JY; Ding GH; Karttunen M
    Biochim Biophys Acta; 2014 Mar; 1838(3):994-1002. PubMed ID: 24374317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse.
    Hu Q; Viswanadham S; Joshi RP; Schoenbach KH; Beebe SJ; Blackmore PF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031914. PubMed ID: 15903466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic effect of electric field and lipid oxidation on the permeability of cell membranes.
    Yusupov M; Van der Paal J; Neyts EC; Bogaerts A
    Biochim Biophys Acta Gen Subj; 2017 Apr; 1861(4):839-847. PubMed ID: 28137619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interpretation of the molecular mechanism of the electroporation induced by symmetrical bipolar picosecond pulse trains.
    Tang J; Ma J; Guo L; Wang K; Yang Y; Bo W; Yang L; Wang Z; Jiang H; Wu Z; Zeng B; Gong Y
    Biochim Biophys Acta Biomembr; 2020 May; 1862(5):183213. PubMed ID: 32057755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.