These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 24680651)

  • 41. Molecular dynamics simulations of ion conductance in field-stabilized nanoscale lipid electropores.
    Ho MC; Casciola M; Levine ZA; Vernier PT
    J Phys Chem B; 2013 Oct; 117(39):11633-40. PubMed ID: 24001115
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation.
    Levine ZA; Vernier PT
    J Membr Biol; 2010 Jul; 236(1):27-36. PubMed ID: 20623350
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Simulations of nanopore formation and phosphatidylserine externalization in lipid membranes subjected to a high-intensity, ultrashort electric pulse.
    Hu Q; Joshi RP; Schoenbach KH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031902. PubMed ID: 16241477
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of electroporation sites in the complex lipid organization of the plasma membrane.
    Rems L; Tang X; Zhao F; Pérez-Conesa S; Testa I; Delemotte L
    Elife; 2022 Feb; 11():. PubMed ID: 35195069
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Controlling ionic conductivity through transprotein electropores in human aquaporin 4: a non-equilibrium molecular-dynamics study.
    Bernardi M; Marracino P; Liberti M; Gárate JA; Burnham CJ; Apollonio F; English NJ
    Phys Chem Chem Phys; 2019 Feb; 21(6):3339-3346. PubMed ID: 30688325
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lipid nanopores can form a stable, ion channel-like conduction pathway in cell membrane.
    Pakhomov AG; Bowman AM; Ibey BL; Andre FM; Pakhomova ON; Schoenbach KH
    Biochem Biophys Res Commun; 2009 Jul; 385(2):181-6. PubMed ID: 19450553
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interactions of the fatty acid-binding protein ReP1-NCXSQ with lipid membranes. Influence of the membrane electric field on binding and orientation.
    Galassi VV; Villarreal MA; Posada V; Montich GG
    Biochim Biophys Acta; 2014 Mar; 1838(3):910-20. PubMed ID: 24269200
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Calculating transmembrane voltage on the electric pulse-affected cancerous cell membrane: using molecular dynamics and finite element simulations.
    Mirshahi S; Vahedi B; Yazdani SO; Golab M; Sazgarnia A
    J Mol Model; 2024 Jun; 30(7):221. PubMed ID: 38904863
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Estimation of activation energy for electroporation and pore growth rate in liquid crystalline and gel phases of lipid bilayers using molecular dynamics simulations.
    Majhi AK; Kanchi S; Venkataraman V; Ayappa KG; Maiti PK
    Soft Matter; 2015 Nov; 11(44):8632-40. PubMed ID: 26372335
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electric-field-induced electroporation and permeation of reactive oxygen species across a skin membrane.
    Yadav DK; Kumar S; Choi EH; Kim MH
    J Biomol Struct Dyn; 2021 Mar; 39(4):1343-1353. PubMed ID: 32072876
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Analysis of cell membrane permeabilization mechanics and pore shape due to ultrashort electrical pulsing.
    Joshi RP; Hu Q
    Med Biol Eng Comput; 2010 Sep; 48(9):837-44. PubMed ID: 20635223
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of transmembrane voltage on the structure of membrane components.
    Sargent DF
    Biophys J; 2001 Sep; 81(3):1823-4. PubMed ID: 11525195
    [No Abstract]   [Full Text] [Related]  

  • 53. Permeabilizing Phospholipid Bilayers with Non-normal Electric Fields.
    Castellani F; Teissié J; Vernier PT
    J Membr Biol; 2018 Apr; 251(2):229-236. PubMed ID: 29094194
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Digression on membrane electroporation for drug and gene delivery.
    Neumann E; Kakorin S
    Technol Cancer Res Treat; 2002 Oct; 1(5):329-40. PubMed ID: 12625758
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Resealing dynamics of a cell membrane after electroporation.
    Bier M; Chen W; Gowrishankar TR; Astumian RD; Lee RC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 1):062905. PubMed ID: 12513333
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanism of electroinduced ionic species transport through a multilamellar lipid system.
    Chizmadzhev YA; Zarnitsin VG; Weaver JC; Potts RO
    Biophys J; 1995 Mar; 68(3):749-65. PubMed ID: 7756542
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cholesterol reduces membrane electroporation and electric deformation of small bilayer vesicles.
    Kakorin S; Brinkmann U; Neumann E
    Biophys Chem; 2005 Sep; 117(2):155-71. PubMed ID: 15923075
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The electrical interplay between proteins and lipids in membranes.
    Richens JL; Lane JS; Bramble JP; O'Shea P
    Biochim Biophys Acta; 2015 Sep; 1848(9):1828-36. PubMed ID: 25817548
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Antioxidant and Membrane Binding Properties of Serotonin Protect Lipids from Oxidation.
    Azouzi S; Santuz H; Morandat S; Pereira C; Côté F; Hermine O; El Kirat K; Colin Y; Le Van Kim C; Etchebest C; Amireault P
    Biophys J; 2017 May; 112(9):1863-1873. PubMed ID: 28494957
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transmembrane Potential Modeling: Comparison between Methods of Constant Electric Field and Ion Imbalance.
    Melcr J; Bonhenry D; Timr Š; Jungwirth P
    J Chem Theory Comput; 2016 May; 12(5):2418-25. PubMed ID: 27014925
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.