BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 24680693)

  • 1. Cotton proteomics for deciphering the mechanism of environment stress response and fiber development.
    Zhou M; Sun G; Sun Z; Tang Y; Wu Y
    J Proteomics; 2014 Jun; 105():74-84. PubMed ID: 24680693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progress and challenges for abiotic stress proteomics of crop plants.
    Barkla BJ; Vera-Estrella R; Pantoja O
    Proteomics; 2013 Jun; 13(12-13):1801-15. PubMed ID: 23512887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current status of genetic engineering in cotton (Gossypium hirsutum L): an assessment.
    Chakravarthy VS; Reddy TP; Reddy VD; Rao KV
    Crit Rev Biotechnol; 2014 Jun; 34(2):144-60. PubMed ID: 23190258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein expression changes during cotton fiber elongation in response to drought stress and recovery.
    Zheng M; Meng Y; Yang C; Zhou Z; Wang Y; Chen B
    Proteomics; 2014 Aug; 14(15):1776-95. PubMed ID: 24889071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative proteomics and transcriptomics reveal key metabolic processes associated with cotton fiber initiation.
    Wang XC; Li Q; Jin X; Xiao GH; Liu GJ; Liu NJ; Qin YM
    J Proteomics; 2015 Jan; 114():16-27. PubMed ID: 25449837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic profiling of developing cotton fibers from wild and domesticated Gossypium barbadense.
    Hu G; Koh J; Yoo MJ; Grupp K; Chen S; Wendel JF
    New Phytol; 2013 Oct; 200(2):570-582. PubMed ID: 23795774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic responses of drought-tolerant and drought-sensitive cotton varieties to drought stress.
    Zhang H; Ni Z; Chen Q; Guo Z; Gao W; Su X; Qu Y
    Mol Genet Genomics; 2016 Jun; 291(3):1293-303. PubMed ID: 26941218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tandem mass tag-based (TMT) quantitative proteomics analysis reveals the response of fine roots to drought stress in cotton (Gossypium hirsutum L.).
    Xiao S; Liu L; Zhang Y; Sun H; Zhang K; Bai Z; Dong H; Liu Y; Li C
    BMC Plant Biol; 2020 Jul; 20(1):328. PubMed ID: 32652934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomics profiling of fiber development and domestication in upland cotton (Gossypium hirsutum L.).
    Hu G; Koh J; Yoo MJ; Pathak D; Chen S; Wendel JF
    Planta; 2014 Dec; 240(6):1237-51. PubMed ID: 25156487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of
    El-Esawi MA; Alayafi AA
    Genes (Basel); 2019 Feb; 10(2):. PubMed ID: 30769841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antioxidant defense in cotton under environmental stresses: Unraveling the crucial role of a universal defense regulator for enhanced cotton sustainability.
    Sheri V; Kumar M; Jaconis S; Zhang B
    Plant Physiol Biochem; 2023 Nov; 204():108141. PubMed ID: 37926000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide characterization of carotenoid oxygenase gene family in three cotton species and functional identification of GaNCED3 in drought and salt stress.
    Cai X; Jiang Z; Tang L; Zhang S; Li X; Wang H; Liu C; Chi J; Zhang X; Zhang J
    J Appl Genet; 2021 Dec; 62(4):527-543. PubMed ID: 34109531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative proteomic and biochemical analyses reveal different molecular events occurring in the process of fiber initiation between wild-type allotetraploid cotton and its fuzzless-lintless mutant.
    Yao Y; Zhang B; Dong CJ; Du Y; Jiang L; Liu JY
    PLoS One; 2015; 10(2):e0117049. PubMed ID: 25700002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deciphering the complex cotton genome for improving fiber traits and abiotic stress resilience in sustainable agriculture.
    Manivannan A; Cheeran Amal T
    Mol Biol Rep; 2023 Aug; 50(8):6937-6953. PubMed ID: 37349608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of qualitative and quantitative traits in cotton under normal and stressed environments using genomics and biotechnological tools: A review.
    Gupta A; Kumar M; Zhang B; Tomar M; Walia AK; Choyal P; Saini RP; Potkule J; Burritt DJ; Sheri V; Verma P; Chandran D; Tran LP
    Plant Sci; 2024 Mar; 340():111937. PubMed ID: 38043729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The resilient cotton plant: uncovering the effects of stresses on secondary metabolomics and its underlying molecular mechanisms.
    Prakash S; Kumar M; Radha ; Kumar S; Jaconis S; Parameswari E; Sharma K; Dhumal S; Senapathy M; Deshmukh VP; Dey A; Lorenzo JM; Sheri V; Zhang B
    Funct Integr Genomics; 2023 May; 23(2):183. PubMed ID: 37233833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the responses of rice to environmental stress using proteomics.
    Singh R; Jwa NS
    J Proteome Res; 2013 Nov; 12(11):4652-69. PubMed ID: 23984864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality.
    Jiang Y; Guo W; Zhu H; Ruan YL; Zhang T
    Plant Biotechnol J; 2012 Apr; 10(3):301-12. PubMed ID: 22044435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent progression and future perspectives in cotton genomic breeding.
    Yang Z; Gao C; Zhang Y; Yan Q; Hu W; Yang L; Wang Z; Li F
    J Integr Plant Biol; 2023 Feb; 65(2):548-569. PubMed ID: 36226594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.