BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

542 related articles for article (PubMed ID: 24680950)

  • 1. Silicon microfluidic flow focusing devices for the production of size-controlled PLGA based drug loaded microparticles.
    Keohane K; Brennan D; Galvin P; Griffin BT
    Int J Pharm; 2014 Jun; 467(1-2):60-9. PubMed ID: 24680950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation, characterization and in vitro cytotoxicity of indomethacin-loaded PLLA/PLGA microparticles using supercritical CO2 technique.
    Kang Y; Wu J; Yin G; Huang Z; Yao Y; Liao X; Chen A; Pu X; Liao L
    Eur J Pharm Biopharm; 2008 Sep; 70(1):85-97. PubMed ID: 18495445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unintended potential impact of perfect sink conditions on PLGA degradation in microparticles.
    Klose D; Delplace C; Siepmann J
    Int J Pharm; 2011 Feb; 404(1-2):75-82. PubMed ID: 21056644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling microencapsulation and release of micronized proteins using poly(ethylene glycol) and electrospraying.
    Bock N; Dargaville TR; Woodruff MA
    Eur J Pharm Biopharm; 2014 Jul; 87(2):366-77. PubMed ID: 24657821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formulations for modulation of protein release from large-size PLGA microparticles for tissue engineering.
    Qodratnama R; Serino LP; Cox HC; Qutachi O; White LJ
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():230-6. PubMed ID: 25492193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water-free microencapsulation of proteins within PLGA microparticles by spray drying using PEG-assisted protein solubilization technique in organic solvent.
    Mok H; Park TG
    Eur J Pharm Biopharm; 2008 Sep; 70(1):137-44. PubMed ID: 18515053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How porosity and size affect the drug release mechanisms from PLGA-based microparticles.
    Klose D; Siepmann F; Elkharraz K; Krenzlin S; Siepmann J
    Int J Pharm; 2006 May; 314(2):198-206. PubMed ID: 16504431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and in vitro evaluation of etoposide-loaded PLGA microspheres for pulmonary drug delivery.
    Feng R; Zhang Z; Li Z; Huang G
    Drug Deliv; 2014 May; 21(3):185-92. PubMed ID: 24107001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of sustained release microparticles with improved initial release property.
    Jung GY; Na YE; Park MS; Park CS; Myung PK
    Arch Pharm Res; 2009 Mar; 32(3):359-65. PubMed ID: 19387579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PLGA-based drug delivery systems: importance of the type of drug and device geometry.
    Klose D; Siepmann F; Elkharraz K; Siepmann J
    Int J Pharm; 2008 Apr; 354(1-2):95-103. PubMed ID: 18055140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and characterization of monodisperse PLGA-alginate core-shell microspheres with monodisperse size and homogeneous shells for controlled drug release.
    Wu J; Kong T; Yeung KW; Shum HC; Cheung KM; Wang L; To MK
    Acta Biomater; 2013 Jul; 9(7):7410-9. PubMed ID: 23535235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Release profile characteristics of biodegradable-polymer-coated drug particles fabricated by dual-capillary electrospray.
    Lee YH; Mei F; Bai MY; Zhao S; Chen DR
    J Control Release; 2010 Jul; 145(1):58-65. PubMed ID: 20346381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PLGA-PEG microspheres of teverelix: influence of polymer type on microsphere characteristics and on teverelix in vitro release.
    Mallardé D; Boutignon F; Moine F; Barré E; David S; Touchet H; Ferruti P; Deghenghi R
    Int J Pharm; 2003 Aug; 261(1-2):69-80. PubMed ID: 12878396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of budesonide-loaded porous PLGA microparticles and their therapeutic efficacy in a murine asthma model.
    Oh YJ; Lee J; Seo JY; Rhim T; Kim SH; Yoon HJ; Lee KY
    J Control Release; 2011 Feb; 150(1):56-62. PubMed ID: 21070826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of paclitaxel: effects of surfactants on particles size, characteristics and in vitro performance.
    Liu Y; Pan J; Feng SS
    Int J Pharm; 2010 Aug; 395(1-2):243-50. PubMed ID: 20472049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. G-CSF loaded biodegradable PLGA nanoparticles prepared by a single oil-in-water emulsion method.
    Choi SH; Park TG
    Int J Pharm; 2006 Mar; 311(1-2):223-8. PubMed ID: 16423477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structured Biodegradable Polymeric Microparticles for Drug Delivery Produced Using Flow Focusing Glass Microfluidic Devices.
    Ekanem EE; Nabavi SA; Vladisavljević GT; Gu S
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):23132-43. PubMed ID: 26423218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of drug release from homogeneous PLGA microstructures.
    Acharya G; Shin CS; Vedantham K; McDermott M; Rish T; Hansen K; Fu Y; Park K
    J Control Release; 2010 Sep; 146(2):201-6. PubMed ID: 20381555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of drug-loaded polymer microparticles with arbitrary geometries using a piezoelectric inkjet printing system.
    Lee BK; Yun YH; Choi JS; Choi YC; Kim JD; Cho YW
    Int J Pharm; 2012 May; 427(2):305-10. PubMed ID: 22366486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PEG-PLGA based large porous particles for pulmonary delivery of a highly soluble drug, low molecular weight heparin.
    Patel B; Gupta V; Ahsan F
    J Control Release; 2012 Sep; 162(2):310-20. PubMed ID: 22800582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.