BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 24681093)

  • 21. [Signal pathways of cell proliferation and death as targets of potential chemotherapeutics].
    Repický A; Jantová S; Milata V
    Ceska Slov Farm; 2008 Jan; 57(1):4-10. PubMed ID: 18383917
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Autophagy and cell death to target cancer cells: exploiting synthetic lethality as cancer therapies.
    Reyjal J; Cormier K; Turcotte S
    Adv Exp Med Biol; 2014; 772():167-88. PubMed ID: 24272359
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Autophagy and cancer therapy.
    Kondo Y; Kondo S
    Autophagy; 2006; 2(2):85-90. PubMed ID: 16874083
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interplay between apoptosis and autophagy, a challenging puzzle: new perspectives on antitumor chemotherapies.
    Bincoletto C; Bechara A; Pereira GJ; Santos CP; Antunes F; Peixoto da-Silva J; Muler M; Gigli RD; Monteforte PT; Hirata H; Jurkiewicz A; Smaili SS
    Chem Biol Interact; 2013 Nov; 206(2):279-88. PubMed ID: 24121004
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Apoptosis signaling in tumor therapy.
    Fulda S; Debatin KM
    Ann N Y Acad Sci; 2004 Dec; 1028():150-6. PubMed ID: 15650241
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modulation of apoptosis signaling for cancer therapy.
    Fulda S; Debatin KM
    Arch Immunol Ther Exp (Warsz); 2006; 54(3):173-5. PubMed ID: 16652217
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Autophagy as a mediator of chemotherapy-induced cell death in cancer.
    Notte A; Leclere L; Michiels C
    Biochem Pharmacol; 2011 Sep; 82(5):427-34. PubMed ID: 21704023
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sodium meta-arsenite induces reactive oxygen species-dependent apoptosis, necrosis, and autophagy in both androgen-sensitive and androgen-insensitive prostate cancer cells.
    Kim Y; Jeong IG; You D; Song SH; Suh N; Jang SW; Kim S; Hwang JJ; Kim CS
    Anticancer Drugs; 2014 Jan; 25(1):53-62. PubMed ID: 24100277
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of targeting lonidamine liposomes that circumvent drug-resistant cancer by acting on mitochondrial signaling pathways.
    Li N; Zhang CX; Wang XX; Zhang L; Ma X; Zhou J; Ju RJ; Li XY; Zhao WY; Lu WL
    Biomaterials; 2013 Apr; 34(13):3366-80. PubMed ID: 23410681
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Apoptosis-modulating drugs for improved cancer therapy.
    Ocker M; Höpfner M
    Eur Surg Res; 2012; 48(3):111-20. PubMed ID: 22538523
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Autophagy: an adaptable modifier of tumourigenesis.
    Wilkinson S; Ryan KM
    Curr Opin Genet Dev; 2010 Feb; 20(1):57-64. PubMed ID: 20080398
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Redox-sensitive signaling factors as a novel molecular targets for cancer therapy.
    Pennington JD; Wang TJ; Nguyen P; Sun L; Bisht K; Smart D; Gius D
    Drug Resist Updat; 2005 Oct; 8(5):322-30. PubMed ID: 16230045
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Epigenetic drugs as pleiotropic agents in cancer treatment: biomolecular aspects and clinical applications.
    Sigalotti L; Fratta E; Coral S; Cortini E; Covre A; Nicolay HJ; Anzalone L; Pezzani L; Di Giacomo AM; Fonsatti E; Colizzi F; Altomonte M; Calabrò L; Maio M
    J Cell Physiol; 2007 Aug; 212(2):330-44. PubMed ID: 17458893
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploiting death receptor signaling pathways for tumor therapy.
    Fulda S; Debatin KM
    Biochim Biophys Acta; 2004 Dec; 1705(1):27-41. PubMed ID: 15585171
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Salinomycin induces apoptosis in cisplatin-resistant colorectal cancer cells by accumulation of reactive oxygen species.
    Zhou J; Li P; Xue X; He S; Kuang Y; Zhao H; Chen S; Zhi Q; Guo X
    Toxicol Lett; 2013 Oct; 222(2):139-45. PubMed ID: 23916687
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective anticancer strategies via intervention of the death pathways relevant to cell transformation.
    Li QX; Yu DH; Liu G; Ke N; McKelvy J; Wong-Staal F
    Cell Death Differ; 2008 Aug; 15(8):1197-210. PubMed ID: 18437165
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Therapeutic exploitation of necroptosis for cancer therapy.
    Fulda S
    Semin Cell Dev Biol; 2014 Nov; 35():51-6. PubMed ID: 25065969
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The autophagic paradox in cancer therapy.
    Wu WK; Coffelt SB; Cho CH; Wang XJ; Lee CW; Chan FK; Yu J; Sung JJ
    Oncogene; 2012 Feb; 31(8):939-53. PubMed ID: 21765470
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxidative stress in apoptosis and cancer: an update.
    Matés JM; Segura JA; Alonso FJ; Márquez J
    Arch Toxicol; 2012 Nov; 86(11):1649-65. PubMed ID: 22811024
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis.
    Ouyang L; Shi Z; Zhao S; Wang FT; Zhou TT; Liu B; Bao JK
    Cell Prolif; 2012 Dec; 45(6):487-98. PubMed ID: 23030059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.