These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 24681244)

  • 1. Fluctuations in pre-trial attentional state and their influence on goal neglect.
    Unsworth N; McMillan BD
    Conscious Cogn; 2014 May; 26():90-6. PubMed ID: 24681244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trial-to-trial fluctuations in attentional state and their relation to intelligence.
    Unsworth N; McMillan BD
    J Exp Psychol Learn Mem Cogn; 2014 May; 40(3):882-91. PubMed ID: 24417327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attentional control adjustments in Eriksen and Stroop task performance can be independent of response conflict.
    Lamers MJ; Roelofs A
    Q J Exp Psychol (Hove); 2011 Jun; 64(6):1056-81. PubMed ID: 21113864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Goal-neglect links Stroop interference with working memory capacity.
    Morey CC; Elliott EM; Wiggers J; Eaves SD; Shelton JT; Mall JT
    Acta Psychol (Amst); 2012 Oct; 141(2):250-60. PubMed ID: 22749714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Goal-driven selective attention in patients with right hemisphere lesions: how intact is the ipsilesional field?
    Snow JC; Mattingley JB
    Brain; 2006 Jan; 129(Pt 1):168-81. PubMed ID: 16317021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurophysiological markers of alert responding during goal-directed behavior: a high-density electrical mapping study.
    Dockree PM; Kelly SP; Robertson IH; Reilly RB; Foxe JJ
    Neuroimage; 2005 Sep; 27(3):587-601. PubMed ID: 16024257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pupillary correlates of preparatory control in the Stroop task.
    Unsworth N; Miller AL
    Atten Percept Psychophys; 2023 Oct; 85(7):2277-2295. PubMed ID: 37407798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cannabis dependence, cognitive control and attentional bias for cannabis words.
    Cousijn J; Watson P; Koenders L; Vingerhoets WA; Goudriaan AE; Wiers RW
    Addict Behav; 2013 Dec; 38(12):2825-32. PubMed ID: 24018225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Allocation of attention and practice in the production of time intervals.
    Sawyer TF
    Percept Mot Skills; 1999 Dec; 89(3 Pt 1):1047-51. PubMed ID: 10665046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Working-memory capacity and the control of attention: the contributions of goal neglect, response competition, and task set to Stroop interference.
    Kane MJ; Engle RW
    J Exp Psychol Gen; 2003 Mar; 132(1):47-70. PubMed ID: 12656297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Stroop matching task presents conflict at both the response and nonresponse levels: an event-related potential and electromyography study.
    Caldas AL; Machado-Pinheiro W; Souza LB; Motta-Ribeiro GC; David IA
    Psychophysiology; 2012 Sep; 49(9):1215-24. PubMed ID: 22748126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Line bisection under an attentional gradient induced by simulated neglect in healthy subjects.
    Grewal P; Viswanathan J; Barton JJ; Lanyon LJ
    Neuropsychologia; 2012 May; 50(6):1190-201. PubMed ID: 22118912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reciprocal influences of attentional focus on postural and suprapostural task performance.
    Wulf G; Mercer J; McNevin N; Guadagnoli MA
    J Mot Behav; 2004 Jun; 36(2):189-99. PubMed ID: 15130869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The locus of the Gratton effect in picture-word interference.
    van Maanen L; van Rijn H
    Top Cogn Sci; 2010 Jan; 2(1):168-80. PubMed ID: 25163629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute alcohol does not impair attentional inhibition as measured with Stroop interference scores but impairs Stroop performance.
    Riedel P; Wolff M; Spreer M; Petzold J; Plawecki MH; Goschke T; Zimmermann US; Smolka MN
    Psychopharmacology (Berl); 2021 Jun; 238(6):1593-1607. PubMed ID: 33660080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relationship between top-down attentional control and changes in weight.
    Hotham S; Sharma D
    Eat Behav; 2015 Aug; 18():81-3. PubMed ID: 26004247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competing for attentional priority: temporary goals versus threats.
    Vogt J; De Houwer J; Crombez G; Van Damme S
    Emotion; 2013 Jun; 13(3):587-98. PubMed ID: 22309730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upper-limb motor control in patients after stroke: attentional demands and the potential beneficial effects of arm support.
    Houwink A; Steenbergen B; Prange GB; Buurke JH; Geurts AC
    Hum Mov Sci; 2013 Apr; 32(2):377-87. PubMed ID: 23642704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ERP correlates of dual mechanisms of control in the counting Stroop task.
    West R; Bailey K
    Psychophysiology; 2012 Oct; 49(10):1309-18. PubMed ID: 22958264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of high frequency rTMS on negative attentional bias are influenced by baseline state anxiety.
    Vanderhasselt MA; Baeken C; Hendricks M; De Raedt R
    Neuropsychologia; 2011 Jun; 49(7):1824-30. PubMed ID: 21414332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.